Files
llamactl/README.md
2025-09-03 23:09:50 +02:00

138 lines
5.6 KiB
Markdown

# llamactl
![Build and Release](https://github.com/lordmathis/llamactl/actions/workflows/release.yaml/badge.svg) ![Go Tests](https://github.com/lordmathis/llamactl/actions/workflows/go_test.yaml/badge.svg) ![WebUI Tests](https://github.com/lordmathis/llamactl/actions/workflows/webui_test.yaml/badge.svg)
**Management server and proxy for multiple llama.cpp instances with OpenAI-compatible API routing.**
## Why llamactl?
🚀 **Multiple Model Serving**: Run different models simultaneously (7B for speed, 70B for quality)
🔗 **OpenAI API Compatible**: Drop-in replacement - route requests by model name
🌐 **Web Dashboard**: Modern React UI for visual management (unlike CLI-only tools)
🔐 **API Key Authentication**: Separate keys for management vs inference access
📊 **Instance Monitoring**: Health checks, auto-restart, log management
**Smart Resource Management**: Idle timeout, LRU eviction, and configurable instance limits
💡 **On-Demand Instance Start**: Automatically launch instances upon receiving OpenAI-compatible API requests
💾 **State Persistence**: Ensure instances remain intact across server restarts
![Dashboard Screenshot](docs/images/dashboard.png)
**Choose llamactl if**: You need authentication, health monitoring, auto-restart, and centralized management of multiple llama-server instances
**Choose Ollama if**: You want the simplest setup with strong community ecosystem and third-party integrations
**Choose LM Studio if**: You prefer a polished desktop GUI experience with easy model management
## Quick Start
```bash
# 1. Install llama-server (one-time setup)
# See: https://github.com/ggml-org/llama.cpp#quick-start
# 2. Download and run llamactl
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-linux-amd64.tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/
# 3. Start the server
llamactl
# Access dashboard at http://localhost:8080
```
## Usage
### Create and manage instances via web dashboard:
1. Open http://localhost:8080
2. Click "Create Instance"
3. Set model path and GPU layers
4. Start or stop the instance
### Or use the REST API:
```bash
# Create instance
curl -X POST localhost:8080/api/v1/instances/my-7b-model \
-H "Authorization: Bearer your-key" \
-d '{"model": "/path/to/model.gguf", "gpu_layers": 32}'
# Use with OpenAI SDK
curl -X POST localhost:8080/v1/chat/completions \
-H "Authorization: Bearer your-key" \
-d '{"model": "my-7b-model", "messages": [{"role": "user", "content": "Hello!"}]}'
```
## Installation
### Option 1: Download Binary (Recommended)
```bash
# Linux/macOS - Get latest version and download
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/
# Or download manually from the releases page:
# https://github.com/lordmathis/llamactl/releases/latest
# Windows - Download from releases page
```
### Option 2: Build from Source
Requires Go 1.24+ and Node.js 22+
```bash
git clone https://github.com/lordmathis/llamactl.git
cd llamactl
cd webui && npm ci && npm run build && cd ..
go build -o llamactl ./cmd/server
```
## Prerequisites
You need `llama-server` from [llama.cpp](https://github.com/ggml-org/llama.cpp) installed:
```bash
# Quick install methods:
# Homebrew (macOS)
brew install llama.cpp
# Or build from source - see llama.cpp docs
```
## Configuration
llamactl works out of the box with sensible defaults.
```yaml
server:
host: "0.0.0.0" # Server host to bind to
port: 8080 # Server port to bind to
allowed_origins: ["*"] # Allowed CORS origins (default: all)
enable_swagger: false # Enable Swagger UI for API docs
instances:
port_range: [8000, 9000] # Port range for instances
data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below)
configs_dir: ~/.local/share/llamactl/instances # Instance configs directory
logs_dir: ~/.local/share/llamactl/logs # Logs directory
auto_create_dirs: true # Auto-create data/config/logs dirs if missing
max_instances: -1 # Max instances (-1 = unlimited)
max_running_instances: -1 # Max running instances (-1 = unlimited)
enable_lru_eviction: true # Enable LRU eviction for idle instances
llama_executable: llama-server # Path to llama-server executable
default_auto_restart: true # Auto-restart new instances by default
default_max_restarts: 3 # Max restarts for new instances
default_restart_delay: 5 # Restart delay (seconds) for new instances
default_on_demand_start: true # Default on-demand start setting
on_demand_start_timeout: 120 # Default on-demand start timeout in seconds
timeout_check_interval: 5 # Idle instance timeout check in minutes
auth:
require_inference_auth: true # Require auth for inference endpoints
inference_keys: [] # Keys for inference endpoints
require_management_auth: true # Require auth for management endpoints
management_keys: [] # Keys for management endpoints
```
For detailed configuration options including environment variables, file locations, and advanced settings, see the [Configuration Guide](docs/getting-started/configuration.md).
## License
MIT License - see [LICENSE](LICENSE) file.