Files
llamactl/README.md

261 lines
9.4 KiB
Markdown

# llamactl
![Build and Release](https://github.com/lordmathis/llamactl/actions/workflows/release.yaml/badge.svg) ![Go Tests](https://github.com/lordmathis/llamactl/actions/workflows/go_test.yaml/badge.svg) ![WebUI Tests](https://github.com/lordmathis/llamactl/actions/workflows/webui_test.yaml/badge.svg)
**Unified management and routing for llama.cpp, MLX and vLLM models with web dashboard.**
## Features
### 🚀 Easy Model Management
- **Multiple Model Serving**: Run different models simultaneously (7B for speed, 70B for quality)
- **On-Demand Instance Start**: Automatically launch instances upon receiving API requests
- **State Persistence**: Ensure instances remain intact across server restarts
### 🔗 Universal Compatibility
- **OpenAI API Compatible**: Drop-in replacement - route requests by instance name
- **Multi-Backend Support**: Native support for llama.cpp, MLX (Apple Silicon optimized), and vLLM
- **Docker Support**: Run backends in containers
### 🌐 User-Friendly Interface
- **Web Dashboard**: Modern React UI for visual management (unlike CLI-only tools)
- **API Key Authentication**: Separate keys for management vs inference access
### ⚡ Smart Operations
- **Instance Monitoring**: Health checks, auto-restart, log management
- **Smart Resource Management**: Idle timeout, LRU eviction, and configurable instance limits
- **Environment Variables**: Set custom environment variables per instance for advanced configuration
![Dashboard Screenshot](docs/images/dashboard.png)
## Quick Start
```bash
# 1. Install backend (one-time setup)
# For llama.cpp: https://github.com/ggml-org/llama.cpp#quick-start
# For MLX on macOS: pip install mlx-lm
# For vLLM: pip install vllm
# Or use Docker - no local installation required
# 2. Download and run llamactl
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-linux-amd64.tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/
# 3. Start the server
llamactl
# Access dashboard at http://localhost:8080
```
## Usage
### Create and manage instances via web dashboard:
1. Open http://localhost:8080
2. Click "Create Instance"
3. Choose backend type (llama.cpp, MLX, or vLLM)
4. Set model path and backend-specific options
5. Configure environment variables if needed (optional)
6. Start or stop the instance
### Or use the REST API:
```bash
# Create llama.cpp instance
curl -X POST localhost:8080/api/v1/instances/my-7b-model \
-H "Authorization: Bearer your-key" \
-d '{"backend_type": "llama_cpp", "backend_options": {"model": "/path/to/model.gguf", "gpu_layers": 32}}'
# Create MLX instance (macOS)
curl -X POST localhost:8080/api/v1/instances/my-mlx-model \
-H "Authorization: Bearer your-key" \
-d '{"backend_type": "mlx_lm", "backend_options": {"model": "mlx-community/Mistral-7B-Instruct-v0.3-4bit"}}'
# Create vLLM instance with environment variables
curl -X POST localhost:8080/api/v1/instances/my-vllm-model \
-H "Authorization: Bearer your-key" \
-d '{"backend_type": "vllm", "backend_options": {"model": "microsoft/DialoGPT-medium", "tensor_parallel_size": 2}, "environment": {"CUDA_VISIBLE_DEVICES": "0,1", "NCCL_DEBUG": "INFO"}}'
# Use with OpenAI SDK
curl -X POST localhost:8080/v1/chat/completions \
-H "Authorization: Bearer your-key" \
-d '{"model": "my-7b-model", "messages": [{"role": "user", "content": "Hello!"}]}'
```
## Installation
### Option 1: Download Binary (Recommended)
```bash
# Linux/macOS - Get latest version and download
LATEST_VERSION=$(curl -s https://api.github.com/repos/lordmathis/llamactl/releases/latest | grep '"tag_name":' | sed -E 's/.*"([^"]+)".*/\1/')
curl -L https://github.com/lordmathis/llamactl/releases/download/${LATEST_VERSION}/llamactl-${LATEST_VERSION}-$(uname -s | tr '[:upper:]' '[:lower:]')-$(uname -m).tar.gz | tar -xz
sudo mv llamactl /usr/local/bin/
# Or download manually from the releases page:
# https://github.com/lordmathis/llamactl/releases/latest
# Windows - Download from releases page
```
### Option 2: Build from Source
Requires Go 1.24+ and Node.js 22+
```bash
git clone https://github.com/lordmathis/llamactl.git
cd llamactl
cd webui && npm ci && npm run build && cd ..
go build -o llamactl ./cmd/server
```
## Prerequisites
### Backend Dependencies
**For llama.cpp backend:**
You need `llama-server` from [llama.cpp](https://github.com/ggml-org/llama.cpp) installed:
```bash
# Homebrew (macOS)
brew install llama.cpp
# Or build from source - see llama.cpp docs
# Or use Docker - no local installation required
```
**For MLX backend (macOS only):**
You need MLX-LM installed:
```bash
# Install via pip (requires Python 3.8+)
pip install mlx-lm
# Or in a virtual environment (recommended)
python -m venv mlx-env
source mlx-env/bin/activate
pip install mlx-lm
```
**For vLLM backend:**
You need vLLM installed:
```bash
# Install via pip (requires Python 3.8+, GPU required)
pip install vllm
# Or in a virtual environment (recommended)
python -m venv vllm-env
source vllm-env/bin/activate
pip install vllm
# Or use Docker - no local installation required
```
## Docker Support
llamactl supports running backends in Docker containers with identical behavior to native execution. This is particularly useful for:
- Production deployments without local backend installation
- Isolating backend dependencies
- GPU-accelerated inference using official Docker images
### Docker Configuration
Enable Docker support using the new structured backend configuration:
```yaml
backends:
llama-cpp:
command: "llama-server"
environment: {} # Environment variables for the backend process
docker:
enabled: true
image: "ghcr.io/ggml-org/llama.cpp:server"
args: ["run", "--rm", "--network", "host", "--gpus", "all"]
environment: {} # Environment variables for the container
vllm:
command: "vllm"
args: ["serve"]
environment: {} # Environment variables for the backend process
docker:
enabled: true
image: "vllm/vllm-openai:latest"
args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g"]
environment: {} # Environment variables for the container
```
### Key Features
- **Host Networking**: Uses `--network host` for seamless port management
- **GPU Support**: Includes `--gpus all` for GPU acceleration
- **Environment Variables**: Configure container environment as needed
- **Flexible Configuration**: Per-backend Docker settings with sensible defaults
### Requirements
- Docker installed and running
- For GPU support: nvidia-docker2 (Linux) or Docker Desktop with GPU support
- No local backend installation required when using Docker
## Configuration
llamactl works out of the box with sensible defaults.
```yaml
server:
host: "0.0.0.0" # Server host to bind to
port: 8080 # Server port to bind to
allowed_origins: ["*"] # Allowed CORS origins (default: all)
enable_swagger: false # Enable Swagger UI for API docs
backends:
llama-cpp:
command: "llama-server"
args: []
environment: {} # Environment variables for the backend process
docker:
enabled: false
image: "ghcr.io/ggml-org/llama.cpp:server"
args: ["run", "--rm", "--network", "host", "--gpus", "all"]
environment: {} # Environment variables for the container
vllm:
command: "vllm"
args: ["serve"]
environment: {} # Environment variables for the backend process
docker:
enabled: false
image: "vllm/vllm-openai:latest"
args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g"]
environment: {} # Environment variables for the container
mlx:
command: "mlx_lm.server"
args: []
environment: {} # Environment variables for the backend process
instances:
port_range: [8000, 9000] # Port range for instances
data_dir: ~/.local/share/llamactl # Data directory (platform-specific, see below)
configs_dir: ~/.local/share/llamactl/instances # Instance configs directory
logs_dir: ~/.local/share/llamactl/logs # Logs directory
auto_create_dirs: true # Auto-create data/config/logs dirs if missing
max_instances: -1 # Max instances (-1 = unlimited)
max_running_instances: -1 # Max running instances (-1 = unlimited)
enable_lru_eviction: true # Enable LRU eviction for idle instances
default_auto_restart: true # Auto-restart new instances by default
default_max_restarts: 3 # Max restarts for new instances
default_restart_delay: 5 # Restart delay (seconds) for new instances
default_on_demand_start: true # Default on-demand start setting
on_demand_start_timeout: 120 # Default on-demand start timeout in seconds
timeout_check_interval: 5 # Idle instance timeout check in minutes
auth:
require_inference_auth: true # Require auth for inference endpoints
inference_keys: [] # Keys for inference endpoints
require_management_auth: true # Require auth for management endpoints
management_keys: [] # Keys for management endpoints
```
For detailed configuration options including environment variables, file locations, and advanced settings, see the [Configuration Guide](docs/getting-started/configuration.md).
## License
MIT License - see [LICENSE](LICENSE) file.