3.2 KiB
Quick Start
This guide will help you get Llamactl up and running in just a few minutes.
Step 1: Start Llamactl
Start the Llamactl server:
llamactl
By default, Llamactl will start on http://localhost:8080.
Step 2: Access the Web UI
Open your web browser and navigate to:
http://localhost:8080
Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.
You should see the Llamactl web interface.
Step 3: Create Your First Instance
-
Click the "Add Instance" button
-
Fill in the instance configuration:
- Name: Give your instance a descriptive name
- Model Path: Path to your Llama.cpp model file
- Additional Options: Any extra Llama.cpp parameters
-
Click "Create Instance"
Step 4: Start Your Instance
Once created, you can:
- Start the instance by clicking the start button
- Monitor its status in real-time
- View logs by clicking the logs button
- Stop the instance when needed
Example Configuration
Here's a basic example configuration for a Llama 2 model:
{
"name": "llama2-7b",
"model_path": "/path/to/llama-2-7b-chat.gguf",
"options": {
"threads": 4,
"context_size": 2048
}
}
Using the API
You can also manage instances via the REST API:
# List all instances
curl http://localhost:8080/api/instances
# Create a new instance
curl -X POST http://localhost:8080/api/instances \
-H "Content-Type: application/json" \
-d '{
"name": "my-model",
"model_path": "/path/to/model.gguf",
}'
# Start an instance
curl -X POST http://localhost:8080/api/instances/my-model/start
OpenAI Compatible API
Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.
Chat Completions
Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "my-model",
"messages": [
{
"role": "user",
"content": "Hello! Can you help me write a Python function?"
}
],
"max_tokens": 150,
"temperature": 0.7
}'
Using with Python OpenAI Client
You can also use the official OpenAI Python client:
from openai import OpenAI
# Point the client to your Llamactl server
client = OpenAI(
base_url="http://localhost:8080/v1",
api_key="not-needed" # Llamactl doesn't require API keys by default
)
# Create a chat completion
response = client.chat.completions.create(
model="my-model", # Use the name of your instance
messages=[
{"role": "user", "content": "Explain quantum computing in simple terms"}
],
max_tokens=200,
temperature=0.7
)
print(response.choices[0].message.content)
List Available Models
Get a list of running instances (models) in OpenAI-compatible format:
curl http://localhost:8080/v1/models
Next Steps
- Learn more about the Web UI
- Explore the API Reference
- Configure advanced settings in the Configuration guide