Files
llamactl/docs/quick-start.md
2025-10-26 16:10:37 +01:00

214 lines
5.2 KiB
Markdown

# Quick Start
This guide will help you get Llamactl up and running in just a few minutes.
## Start Llamactl
Start the Llamactl server:
```bash
llamactl
```
By default, Llamactl will start on `http://localhost:8080`.
## Access the Web UI
Open your web browser and navigate to:
```
http://localhost:8080
```
Login with the management API key. By default it is generated during server startup. Copy it from the terminal output.
You should see the Llamactl web interface.
## Create Your First Instance
1. Click the "Add Instance" button
2. Fill in the instance configuration:
- **Name**: Give your instance a descriptive name
- **Node**: Select which node to deploy the instance to (defaults to "main" for single-node setups)
- **Backend Type**: Choose from llama.cpp, MLX, or vLLM
- **Model**: Model path or huggingface repo
- **Additional Options**: Backend-specific parameters
!!! tip "Auto-Assignment"
Llamactl automatically assigns ports from the configured port range (default: 8000-9000) and generates API keys if authentication is enabled. You typically don't need to manually specify these values.
!!! note "Remote Node Deployment"
If you have configured remote nodes in your configuration file, you can select which node to deploy the instance to. This allows you to distribute instances across multiple machines. See the [Configuration](configuration.md#remote-node-configuration) guide for details on setting up remote nodes.
3. Click "Create Instance"
## Start Your Instance
Once created, you can:
- **Start** the instance by clicking the start button
- **Monitor** its status in real-time
- **View logs** by clicking the logs button
- **Stop** the instance when needed
## Example Configurations
Here are basic example configurations for each backend:
**llama.cpp backend:**
```json
{
"name": "llama2-7b",
"backend_type": "llama_cpp",
"backend_options": {
"model": "/path/to/llama-2-7b-chat.gguf",
"threads": 4,
"ctx_size": 2048,
"gpu_layers": 32
},
"nodes": ["main"]
}
```
**MLX backend (macOS only):**
```json
{
"name": "mistral-mlx",
"backend_type": "mlx_lm",
"backend_options": {
"model": "mlx-community/Mistral-7B-Instruct-v0.3-4bit",
"temp": 0.7,
"max_tokens": 2048
},
"nodes": ["main"]
}
```
**vLLM backend:**
```json
{
"name": "dialogpt-vllm",
"backend_type": "vllm",
"backend_options": {
"model": "microsoft/DialoGPT-medium",
"tensor_parallel_size": 2,
"gpu_memory_utilization": 0.9
},
"nodes": ["main"]
}
```
**Multi-node deployment example:**
```json
{
"name": "distributed-model",
"backend_type": "llama_cpp",
"backend_options": {
"model": "/path/to/model.gguf",
"gpu_layers": 32
},
"nodes": ["worker1", "worker2"]
}
```
## Docker Support
Llamactl can run backends in Docker containers. To enable Docker for a backend, add a `docker` section to that backend in your YAML configuration file (e.g. `config.yaml`) as shown below:
```yaml
backends:
vllm:
command: "vllm"
args: ["serve"]
docker:
enabled: true
image: "vllm/vllm-openai:latest"
args: ["run", "--rm", "--network", "host", "--gpus", "all", "--shm-size", "1g"]
```
## Using the API
You can also manage instances via the REST API:
```bash
# List all instances
curl http://localhost:8080/api/instances
# Create a new llama.cpp instance
curl -X POST http://localhost:8080/api/instances/my-model \
-H "Content-Type: application/json" \
-d '{
"backend_type": "llama_cpp",
"backend_options": {
"model": "/path/to/model.gguf"
}
}'
# Start an instance
curl -X POST http://localhost:8080/api/instances/my-model/start
```
## OpenAI Compatible API
Llamactl provides OpenAI-compatible endpoints, making it easy to integrate with existing OpenAI client libraries and tools.
### Chat Completions
Once you have an instance running, you can use it with the OpenAI-compatible chat completions endpoint:
```bash
curl -X POST http://localhost:8080/v1/chat/completions \
-H "Content-Type: application/json" \
-d '{
"model": "my-model",
"messages": [
{
"role": "user",
"content": "Hello! Can you help me write a Python function?"
}
],
"max_tokens": 150,
"temperature": 0.7
}'
```
### Using with Python OpenAI Client
You can also use the official OpenAI Python client:
```python
from openai import OpenAI
# Point the client to your Llamactl server
client = OpenAI(
base_url="http://localhost:8080/v1",
api_key="not-needed" # Llamactl doesn't require API keys by default
)
# Create a chat completion
response = client.chat.completions.create(
model="my-model", # Use the name of your instance
messages=[
{"role": "user", "content": "Explain quantum computing in simple terms"}
],
max_tokens=200,
temperature=0.7
)
print(response.choices[0].message.content)
```
### List Available Models
Get a list of running instances (models) in OpenAI-compatible format:
```bash
curl http://localhost:8080/v1/models
```
## Next Steps
- Manage instances [Managing Instances](managing-instances.md)
- Explore the [API Reference](api-reference.md)
- Configure advanced settings in the [Configuration](configuration.md) guide