Files
CUDANet/src/tensor.cpp

110 lines
2.5 KiB
C++

#include "tensor.hpp"
#include <stdexcept>
using namespace CUDANet;
Tensor::Tensor(Shape shape, CUDANet::Backend* backend)
: Tensor(shape, backend->get_default_dtype(), backend) {}
Tensor::Tensor(Shape shape, DType dtype, Backend* backend)
: shape(shape), dtype(dtype), backend(backend), d_ptr(nullptr) {
if (shape.empty()) {
throw std::runtime_error("Tensor shape cannot be empty");
}
// Check if backend supports DType
if (!backend->supports_dtype(dtype)) {
throw std::runtime_error("Unsupported DType");
}
// Count total elements
size_t count = 1;
for (size_t i = 0; i < shape.size(); ++i) {
count *= shape[i];
}
total_elms = count;
// Compute total size (bytes)
size_t type_size = 0;
switch (dtype) {
case DType::FLOAT32:
type_size = 4;
break;
default:
throw std::runtime_error("Unsupported data type");
}
total_size = total_elms * type_size;
// Allocate memory on backend
d_ptr = backend->allocate(total_size);
}
Tensor::Tensor(Tensor&& other) noexcept
: shape(std::move(other.shape)),
dtype(other.dtype),
total_elms(other.total_elms),
total_size(other.total_size),
backend(other.backend),
d_ptr(other.d_ptr) {
other.d_ptr = nullptr;
other.backend = nullptr;
}
Tensor& Tensor::operator=(Tensor&& other) noexcept {
if (this != &other) {
// Clean up our current resources
if (d_ptr != nullptr && backend != nullptr) {
backend->deallocate(d_ptr);
}
// Steal other's resources
shape = std::move(other.shape);
dtype = other.dtype;
total_elms = other.total_elms;
total_size = other.total_size;
backend = other.backend;
d_ptr = other.d_ptr;
// Leave other in valid but empty state
other.d_ptr = nullptr;
other.backend = nullptr;
}
return *this;
}
Tensor::~Tensor() {
if (backend && d_ptr) {
backend->deallocate(d_ptr);
d_ptr = nullptr;
}
}
DType Tensor::get_dtype() const {
return dtype;
}
size_t Tensor::numel() const {
return total_elms;
}
size_t Tensor::size() const {
return total_size;
}
void* Tensor::device_ptr() {
return d_ptr;
}
void Tensor::zero() {
backend->zero(*this);
}
void Tensor::fill(int value) {
backend->fill(*this, value);
}
void Tensor::set_data(void *data) {
backend->copy_to_device(*this, data, total_size);
}