mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
135 lines
3.6 KiB
Plaintext
135 lines
3.6 KiB
Plaintext
#include <cuda_runtime_api.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <iostream>
|
|
|
|
#include "activation_functions.cuh"
|
|
#include "cuda_helper.cuh"
|
|
|
|
TEST(ActivationFunctionsTest, SigmoidSanityCheck) {
|
|
cudaError_t cudaStatus;
|
|
|
|
float input[3] = {-100.0f, 0.0f, 100.0f};
|
|
|
|
std::vector<float> expected_output = {0.0f, 0.5f, 1.0f};
|
|
|
|
float* d_input;
|
|
float* d_output;
|
|
|
|
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 3);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * 3);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
cudaStatus =
|
|
cudaMemcpy(d_input, input, sizeof(float) * 3, cudaMemcpyHostToDevice);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
CUDANet::Kernels::sigmoid<<<1, 3>>>(d_input, d_output, 3);
|
|
cudaStatus = cudaDeviceSynchronize();
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
std::vector<float> output(3);
|
|
|
|
cudaStatus = cudaMemcpy(
|
|
output.data(), d_output, sizeof(float) * 3, cudaMemcpyDeviceToHost
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
for (int i = 0; i < 3; i++) {
|
|
EXPECT_NEAR(expected_output[i], output[i], 1e-5);
|
|
}
|
|
|
|
cudaFree(d_input);
|
|
cudaFree(d_output);
|
|
}
|
|
|
|
TEST(ActivationFunctionsTest, SoftmaxExpTest) {
|
|
cudaError_t cudaStatus;
|
|
|
|
float input[6] = {22.496f, 36.9006f, 30.9904f,
|
|
28.4213f, 26.4541f, 31.7887f};
|
|
|
|
std::vector<float> expected = {5886928896.0f, 1.06102872080384e+16f,
|
|
28771323215872.0f, 2204012904448.0f,
|
|
308226162688.0f, 63922983927808.0f};
|
|
|
|
float* d_input;
|
|
float* d_output;
|
|
|
|
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 6);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * 6);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
cudaStatus =
|
|
cudaMemcpy(d_input, input, sizeof(float) * 6, cudaMemcpyHostToDevice);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
CUDANet::Kernels::softmax_exp<<<1, 6>>>(d_input, d_output, 6);
|
|
cudaStatus = cudaDeviceSynchronize();
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
std::vector<float> output(6);
|
|
|
|
cudaStatus = cudaMemcpy(
|
|
output.data(), d_output, sizeof(float) * 6, cudaMemcpyDeviceToHost
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
for (int i = 0; i < 6; i++) {
|
|
EXPECT_NEAR(expected[i], output[i], 1e7);
|
|
}
|
|
|
|
cudaFree(d_input);
|
|
cudaFree(d_output);
|
|
}
|
|
|
|
TEST(ActivationFunctionsTest, SoftmaxSumTest) {
|
|
cudaError_t cudaStatus;
|
|
|
|
const int n = 10;
|
|
std::vector<float> input(n);
|
|
for (int i = 0; i < n; i++) {
|
|
input[i] = i;
|
|
}
|
|
|
|
const float expected = n * (n - 1) / 2;
|
|
|
|
float* d_input;
|
|
float* d_sum;
|
|
|
|
const int gridSize = (n + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
|
|
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * n);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
cudaStatus = cudaMalloc((void**)&d_sum, sizeof(float) * n);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
cudaStatus =
|
|
cudaMemcpy(d_input, input.data(), sizeof(float) * n, cudaMemcpyHostToDevice);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
CUDANet::Kernels::softmax_sum<<<gridSize, BLOCK_SIZE>>>(
|
|
d_input, d_sum
|
|
);
|
|
|
|
CUDANet::Kernels::softmax_sum<<<1, BLOCK_SIZE>>>(
|
|
d_sum, d_sum
|
|
);
|
|
|
|
CUDANet::Kernels::softmax_sum<<<1, BLOCK_SIZE>>>(
|
|
d_sum, d_sum
|
|
);
|
|
|
|
std::vector<float> sum(n);
|
|
cudaStatus = cudaMemcpy(
|
|
sum.data(), d_sum, sizeof(float) * n, cudaMemcpyDeviceToHost
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
EXPECT_FLOAT_EQ(expected, sum[0]);
|
|
} |