Files
CUDANet/examples/alexnet/main.cpp

130 lines
4.1 KiB
C++

#include <iostream>
#include <string>
#include <vector>
#include <opencv2/opencv.hpp>
#include <model.hpp>
#include <conv2d.cuh>
#include <max_pooling.cuh>
#include <dense.cuh>
std::vector<float> readAndNormalizeImage(const std::string& imagePath, int width, int height) {
// Read the image using OpenCV
cv::Mat image = cv::imread(imagePath, cv::IMREAD_GRAYSCALE);
// Resize and normalize the image
cv::resize(image, image, cv::Size(width, height));
image.convertTo(image, CV_32F);
cv::normalize(image, image, 0.0, 1.0, cv::NORM_MINMAX);
// Convert the 2D image matrix to a 1D array of floats
std::vector<float> imageData;
for (int i = 0; i < image.rows; ++i) {
for (int j = 0; j < image.cols; ++j) {
imageData.push_back(image.at<float>(i, j));
}
}
return imageData;
}
CUDANet::Model* createModel(const int inputSize, const int inputChannels, const int outputSize) {
CUDANet::Model *model =
new CUDANet::Model(inputSize, inputChannels, outputSize);
// Block 1
CUDANet::Layers::Conv2d *conv1 = new CUDANet::Layers::Conv2d(
inputSize, inputChannels, 11, 4, 64, 2, CUDANet::Layers::ActivationType::RELU
);
model->addLayer("features.0", conv1); // Match pytorch naming
CUDANet::Layers::MaxPooling2D *pool1 = new CUDANet::Layers::MaxPooling2D(
56, 64, 3, 2, CUDANet::Layers::ActivationType::NONE
);
model->addLayer("pool1", pool1);
// Block 2
CUDANet::Layers::Conv2d *conv2 = new CUDANet::Layers::Conv2d(
27, 64, 5, 1, 192, 2, CUDANet::Layers::ActivationType::RELU
);
model->addLayer("features.3", conv2);
CUDANet::Layers::MaxPooling2D *pool2 = new CUDANet::Layers::MaxPooling2D(
27, 192, 3, 2, CUDANet::Layers::ActivationType::NONE
);
model->addLayer("pool2", pool2);
// Block 3
CUDANet::Layers::Conv2d *conv3 = new CUDANet::Layers::Conv2d(
13, 192, 3, 1, 384, 1, CUDANet::Layers::ActivationType::RELU
);
model->addLayer("features.6", conv3);
// Block 4
CUDANet::Layers::Conv2d *conv4 = new CUDANet::Layers::Conv2d(
13, 384, 3, 1, 256, 1, CUDANet::Layers::ActivationType::RELU
);
model->addLayer("features.8", conv4);
// Block 5
CUDANet::Layers::Conv2d *conv5 = new CUDANet::Layers::Conv2d(
13, 256, 3, 1, 256, 1, CUDANet::Layers::ActivationType::RELU
);
model->addLayer("features.10", conv5);
CUDANet::Layers::MaxPooling2D *pool5 = new CUDANet::Layers::MaxPooling2D(
13, 256, 3, 2, CUDANet::Layers::ActivationType::NONE
);
model->addLayer("pool5", pool5);
// Classifier
CUDANet::Layers::Dense *dense1 = new CUDANet::Layers::Dense(
6 * 6 * 256, 4096, CUDANet::Layers::ActivationType::RELU
);
model->addLayer("classifier.1", dense1);
CUDANet::Layers::Dense *dense2 = new CUDANet::Layers::Dense(
4096, 4096, CUDANet::Layers::ActivationType::RELU
);
model->addLayer("classifier.4", dense2);
CUDANet::Layers::Dense *dense3 = new CUDANet::Layers::Dense(
4096, 1000, CUDANet::Layers::ActivationType::NONE
);
model->addLayer("classifier.6", dense3);
return model;
}
int main(int argc, const char* const argv[]) {
if (argc != 3) {
std::cerr << "Usage: " << argv[0] << "<model_weights_path> <image_path>" << std::endl;
return 1; // Return error code indicating incorrect usage
}
// Path to the image file
std::string modelWeightsPath = argv[1];
std::string imagePath = argv[2];
const int inputSize = 227;
const int inputChannels = 3;
const int outputSize = 1000;
CUDANet::Model *model = createModel(inputSize, inputChannels, outputSize);
model->loadWeights(modelWeightsPath);
// Read and normalize the image
std::vector<float> imageData = readAndNormalizeImage(imagePath, inputSize, inputSize);
// Print the size of the image data
float* output = model->predict(imageData.data());
// Get max index
int maxIndex = 0;
for (int i = 0; i < outputSize; i++) {
if (output[i] > output[maxIndex]) {
maxIndex = i;
}
}
std::cout << "Prediction: " << maxIndex << std::endl;
return 0;
}