Files
CUDANet/examples/inception_v3/inception_v3.cpp

365 lines
12 KiB
C++

#include <cudanet.cuh>
#include <iostream>
int main(int argc, const char *const argv[]) {
if (argc != 3) {
std::cerr << "Usage: " << argv[0] << "<model_weights_path> <image_path>"
<< std::endl;
return 1; // Return error code indicating incorrect usage
}
std::cout << "Loading model..." << std::endl;
}
class BasicConv2d : public CUDANet::Module {
public:
BasicConv2d(
const dim2d inputSize,
const int inputChannels,
const int outputChannels,
const dim2d kernelSize,
const dim2d stride,
const dim2d padding,
const std::string &prefix
) {
// Create the convolution layer
conv = new CUDANet::Layers::Conv2d(
inputSize, inputChannels, kernelSize, stride, outputChannels,
padding, CUDANet::Layers::ActivationType::NONE
);
dim2d batchNormSize = conv->getOutputDims();
batchNorm = new CUDANet::Layers::BatchNorm2d(
batchNormSize, outputChannels, 1e-3f,
CUDANet::Layers::ActivationType::RELU
);
addLayer(prefix + ".conv", conv);
addLayer(prefix + ".bn", batchNorm);
}
float *forward(const float *d_input) {
float *d_output = conv->forward(d_input);
return batchNorm->forward(d_output);
}
dim2d getOutputDims() {
return batchNorm->getOutputDims();
}
private:
CUDANet::Layers::Conv2d *conv;
CUDANet::Layers::BatchNorm2d *batchNorm;
};
class InceptionA : public CUDANet::Module {
public:
InceptionA(
const dim2d inputSize,
const int inputChannels,
const int poolFeatures,
const std::string &prefix
)
: inputSize(inputSize),
inputChannels(inputChannels),
poolFeatures(poolFeatures) {
// Branch 1x1
branch1x1 = new BasicConv2d(
inputSize, inputChannels, 64, {1, 1}, {1, 1}, {0, 0},
prefix + ".branch1x1"
);
addLayer("", branch1x1);
// Branch 5x5
branch5x5_1 = new BasicConv2d(
inputSize, inputChannels, 48, {1, 1}, {1, 1}, {0, 0},
prefix + ".branch5x5_1"
);
addLayer("", branch5x5_1);
branch5x5_2 = new BasicConv2d(
inputSize, 48, 64, {5, 5}, {1, 1}, {2, 2}, prefix + ".branch5x5_2"
);
addLayer("", branch5x5_2);
// Branch 3x3
branch3x3dbl_1 = new BasicConv2d(
inputSize, inputChannels, 64, {1, 1}, {1, 1}, {0, 0},
prefix + ".branch3x3dbl_1"
);
addLayer("", branch3x3dbl_1);
branch3x3dbl_2 = new BasicConv2d(
inputSize, 64, 96, {3, 3}, {1, 1}, {1, 1},
prefix + ".branch3x3dbl_2"
);
addLayer("", branch3x3dbl_2);
branch3x3dbl_3 = new BasicConv2d(
inputSize, 96, 96, {3, 3}, {1, 1}, {1, 1},
prefix + ".branch3x3dbl_3"
);
addLayer("", branch3x3dbl_3);
// Branch Pool
branchPool_1 = new CUDANet::Layers::AvgPooling2d(
inputSize, inputChannels, {3, 3}, {1, 1}, {1, 1},
CUDANet::Layers::ActivationType::NONE
);
addLayer("", branchPool_1);
branchPool_2 = new BasicConv2d(
branchPool_1->getOutputDims(), inputChannels, poolFeatures, {1, 1},
{1, 1}, {0, 0}, prefix + ".branchPool"
);
addLayer("", branchPool_2);
// Concat
concat_1 = new CUDANet::Layers::Concat(
branch1x1->getOutputSize(), branch5x5_2->getOutputSize()
);
concat_2 = new CUDANet::Layers::Concat(
concat_1->getOutputSize(), branch3x3dbl_3->getOutputSize()
);
concat_3 = new CUDANet::Layers::Concat(
concat_2->getOutputSize(), branchPool_2->getOutputSize()
);
}
float *forward(const float *d_input) {
float *d_branch1x1_out = branch1x1->forward(d_input);
float *d_branch5x5_out = branch5x5_1->forward(d_input);
d_branch5x5_out = branch5x5_2->forward(d_branch5x5_out);
float *d_branch3x3_out = branch3x3dbl_1->forward(d_input);
d_branch3x3_out = branch3x3dbl_2->forward(d_branch3x3_out);
d_branch3x3_out = branch3x3dbl_3->forward(d_branch3x3_out);
float *d_branchPool_out = branchPool_1->forward(d_input);
d_branchPool_out = branchPool_2->forward(d_branchPool_out);
float *d_output = concat_1->forward(d_branch1x1_out, d_branch5x5_out);
d_output = concat_2->forward(d_output, d_branch3x3_out);
d_output = concat_3->forward(d_output, d_branchPool_out);
return d_output;
}
private:
dim2d inputSize;
int inputChannels;
int poolFeatures;
BasicConv2d *branch1x1;
BasicConv2d *branch5x5_1;
BasicConv2d *branch5x5_2;
BasicConv2d *branch3x3dbl_1;
BasicConv2d *branch3x3dbl_2;
BasicConv2d *branch3x3dbl_3;
CUDANet::Layers::AvgPooling2d *branchPool_1;
BasicConv2d *branchPool_2;
CUDANet::Layers::Concat *concat_1;
CUDANet::Layers::Concat *concat_2;
CUDANet::Layers::Concat *concat_3;
};
class InceptionB : public CUDANet::Module {
public:
InceptionB(
const dim2d inputSize,
const int inputChannels,
const std::string &prefix
)
: inputSize(inputSize), inputChannels(inputChannels) {
// Branch 3x3
branch3x3 = new BasicConv2d(
inputSize, inputChannels, 384, {3, 3}, {2, 2}, {0, 0}, "branch1x1"
);
addLayer("", branch3x3);
// Branch 3x3dbl
branch3x3dbl_1 = new BasicConv2d(
inputSize, inputChannels, 64, {1, 1}, {1, 1}, {0, 0},
"branch3x3dbl_1"
);
addLayer("", branch3x3dbl_1);
branch3x3dbl_2 = new BasicConv2d(
branch3x3dbl_1->getOutputDims(), 96, 96, {3, 3}, {1, 1}, {1, 1},
"branch3x3dbl_2"
);
addLayer("", branch3x3dbl_2);
branch3x3dbl_3 = new BasicConv2d(
branch3x3dbl_2->getOutputDims(), 96, 96, {3, 3}, {2, 2}, {1, 1},
"branch3x3dbl_3"
);
addLayer("", branch3x3dbl_3);
branchPool = new CUDANet::Layers::MaxPooling2d(
inputSize, inputChannels, {3, 3}, {2, 2}, {0, 0},
CUDANet::Layers::ActivationType::NONE
);
addLayer(prefix + ".branchPool", branchPool);
concat_1 = new CUDANet::Layers::Concat(
branch3x3->getOutputSize(), branch3x3dbl_3->getOutputSize()
);
concat_2 = new CUDANet::Layers::Concat(
concat_1->getOutputSize(), branchPool->getOutputSize()
);
}
float *forward(const float *d_input) {
float *d_branch3x3_out = branch3x3->forward(d_input);
float *d_branch3x3dbl_out = branch3x3dbl_1->forward(d_input);
d_branch3x3dbl_out = branch3x3dbl_2->forward(d_branch3x3dbl_out);
d_branch3x3dbl_out = branch3x3dbl_3->forward(d_branch3x3dbl_out);
float *d_branchPool_out = branchPool->forward(d_input);
float *d_output =
concat_1->forward(d_branch3x3_out, d_branch3x3dbl_out);
d_output = concat_2->forward(d_output, d_branchPool_out);
return d_output;
}
private:
dim2d inputSize;
int inputChannels;
BasicConv2d *branch3x3;
BasicConv2d *branch3x3dbl_1;
BasicConv2d *branch3x3dbl_2;
BasicConv2d *branch3x3dbl_3;
CUDANet::Layers::MaxPooling2d *branchPool;
CUDANet::Layers::Concat *concat_1;
CUDANet::Layers::Concat *concat_2;
};
class InceptionC : public CUDANet::Module {
public:
InceptionC(
const dim2d inputSize,
const int inputChannels,
const int nChannels_7x7,
const std::string &prefix
)
: inputSize(inputSize), inputChannels(inputChannels) {
// Branch 1x1
branch1x1 = new BasicConv2d(
inputSize, inputChannels, 192, {1, 1}, {1, 1}, {0, 0}, "branch1x1"
);
// Branch 7x7
branch7x7_1 = new BasicConv2d(
inputSize, inputChannels, nChannels_7x7, {1, 1}, {1, 1}, {0, 0},
"branch7x7_1"
);
branch7x7_2 = new BasicConv2d(
branch7x7_1->getOutputDims(), nChannels_7x7, nChannels_7x7, {1, 7},
{1, 1}, {0, 3}, "branch7x7_2"
);
branch7x7_3 = new BasicConv2d(
branch7x7_2->getOutputDims(), nChannels_7x7, 192, {7, 1}, {1, 1},
{3, 0}, "branch7x7_3"
);
// Branch 7x7dbl
branch7x7dbl_1 = new BasicConv2d(
inputSize, inputChannels, nChannels_7x7, {1, 1}, {1, 1}, {0, 0},
"branch7x7dbl_1"
);
branch7x7dbl_2 = new BasicConv2d(
branch7x7dbl_1->getOutputDims(), nChannels_7x7, nChannels_7x7, {7, 1},
{1, 1}, {3, 0}, "branch7x7dbl_2"
);
branch7x7dbl_3 = new BasicConv2d(
branch7x7dbl_2->getOutputDims(), nChannels_7x7, nChannels_7x7, {1, 7},
{1, 1}, {0, 3}, "branch7x7dbl_3"
);
branch7x7dbl_4 = new BasicConv2d(
branch7x7dbl_3->getOutputDims(), nChannels_7x7, nChannels_7x7, {7, 1},
{1, 1}, {3, 0}, "branch7x7dbl_4"
);
branch7x7dbl_5 = new BasicConv2d(
branch7x7dbl_4->getOutputDims(), nChannels_7x7, 192, {1, 7}, {1, 1},
{0, 3}, "branch7x7dbl_5"
);
// Branch Pool
branchPool_1 = new CUDANet::Layers::AvgPooling2d(
inputSize, inputChannels, {3, 3}, {1, 1}, {1, 1}, CUDANet::Layers::ActivationType::NONE
);
branchPool_2 = new BasicConv2d(
branchPool_1->getOutputDims(), inputChannels, 192, {1, 1}, {1, 1},
{0, 0}, "branchPool_2"
);
// Concat
concat_1 = new CUDANet::Layers::Concat(
branch1x1->getOutputSize(),
branch7x7_3->getOutputSize()
);
concat_2 = new CUDANet::Layers::Concat(
concat_1->getOutputSize(),
branch7x7dbl_5->getOutputSize()
);
concat_3 = new CUDANet::Layers::Concat(
concat_2->getOutputSize(),
branchPool_2->getOutputSize()
);
}
float *forward(const float *d_input) {
float *branch1x1_output = branch1x1->forward(d_input);
float *branch7x7_output = branch7x7_1->forward(d_input);
branch7x7_output = branch7x7_2->forward(branch7x7_output);
branch7x7_output = branch7x7_3->forward(branch7x7_output);
float *branch7x7dbl_output = branch7x7dbl_1->forward(d_input);
branch7x7dbl_output = branch7x7dbl_2->forward(branch7x7dbl_output);
branch7x7dbl_output = branch7x7dbl_3->forward(branch7x7dbl_output);
branch7x7dbl_output = branch7x7dbl_4->forward(branch7x7dbl_output);
branch7x7dbl_output = branch7x7dbl_5->forward(branch7x7dbl_output);
float *branchPool_output = branchPool_1->forward(d_input);
branchPool_output = branchPool_2->forward(branchPool_output);
float *d_output = concat_1->forward(branch1x1_output, branch7x7_output);
d_output = concat_2->forward(d_output, branch7x7dbl_output);
d_output = concat_3->forward(d_output, branchPool_output);
return d_output;
}
private:
dim2d inputSize;
int inputChannels;
BasicConv2d *branch1x1;
BasicConv2d *branch7x7_1;
BasicConv2d *branch7x7_2;
BasicConv2d *branch7x7_3;
BasicConv2d *branch7x7dbl_1;
BasicConv2d *branch7x7dbl_2;
BasicConv2d *branch7x7dbl_3;
BasicConv2d *branch7x7dbl_4;
BasicConv2d *branch7x7dbl_5;
CUDANet::Layers::AvgPooling2d *branchPool_1;
BasicConv2d *branchPool_2;
CUDANet::Layers::Concat *concat_1;
CUDANet::Layers::Concat *concat_2;
CUDANet::Layers::Concat *concat_3;
};