Files
CUDANet/include/layers/dense.cuh
2024-03-19 21:35:05 +01:00

95 lines
1.9 KiB
Plaintext

#ifndef CUDANET_DENSE_LAYER_H
#define CUDANET_DENSE_LAYER_H
#include <functional>
#include <string>
#include <vector>
#include "layer.cuh"
namespace CUDANet::Layers {
/**
* @brief Dense (fully connected) layer
*
*/
class Dense : public WeightedLayer {
public:
/**
* @brief Construct a new Dense layer
*
* @param inputSize Size of the input vector
* @param outputSize Size of the output vector
* @param activationType Activation function type ('RELU', 'SIGMOID', 'SOFTMAX' or 'NONE')
*/
Dense(int inputSize, int outputSize, Layers::ActivationType activationType);
/**
* @brief Destroy the Dense layer
*
*/
~Dense();
/**
* @brief Forward pass of the dense layer
*
* @param d_input Device pointer to the input vector
* @return Device pointer to the output vector
*/
float* forward(const float* d_input);
/**
* @brief Set the weights of the layer
*
* @param weights Pointer to vector of weights
*/
void setWeights(const float* weights);
/**
* @brief Set the biases of the layer
*
* @param biases Pointer to vector of biases
*/
void setBiases(const float* biases);
private:
unsigned int inputSize;
unsigned int outputSize;
float* d_output;
float* d_weights;
float* d_biases;
std::vector<float> weights;
std::vector<float> biases;
Layers::Activation activation;
// Precompute kernel launch parameters
unsigned int forwardGridSize;
unsigned int biasGridSize;
/**
* @brief Initialize the weights to zeros
*
*/
void initializeWeights();
/**
* @brief Initialize the biases to zeros
*
*/
void initializeBiases();
/**
* @brief Copy the weights and biases to the device
*
*/
void toCuda();
};
} // namespace CUDANet::Layers
#endif // CUDANET_DENSE_LAYER_H