Files
CUDANet/include/backend.hpp
2025-11-24 21:53:47 +01:00

144 lines
3.8 KiB
C++

#pragma once
#include <cstddef>
#include <stdexcept>
#include "shape.hpp"
#ifdef USE_CUDA
#include "backend/cuda/cuda.cuh"
#endif
namespace CUDANet {
// Forward declaration
class Tensor;
enum BackendType { CUDA_BACKEND, CPU_BACKEND };
struct BackendConfig {
int device_id = 0;
};
class BackendFactory {
public:
static std::unique_ptr<Backend> create(BackendType backend_type, const BackendConfig& config) {
switch (backend_type)
{
case BackendType::CUDA_BACKEND:
#ifdef USE_CUDA
if (!CUDANet::Backends::CUDA::is_cuda_available()) {
throw std::runtime_error("No CUDA devices found")
}
auto cuda = std::make_unique<CUDANet::Backends::CUDA>(config);
cuda.initialize();
return cuda;
#else
throw std::runtime_error("Library was compiled without CUDA support.");
#endif
break;
default:
break;
}
return nullptr;
}
};
class Backend {
public:
// Memory management
virtual void* allocate(size_t bytes) = 0;
virtual void deallocate(void* ptr) = 0;
// Tensor ops
virtual void print(const CUDANet::Tensor& input) = 0;
virtual void zero(CUDANet::Tensor& input) = 0;
virtual void fill(CUDANet::Tensor& input, int data) = 0;
virtual void
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) = 0;
virtual void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) = 0;
virtual void max(const CUDANet::Tensor& input, CUDANet::Tensor& max) = 0;
// Layer ops
virtual void relu(CUDANet::Tensor& tensor) = 0;
virtual void sigmoid(CUDANet::Tensor& tensor) = 0;
virtual void softmax(
CUDANet::Tensor& tensor,
CUDANet::Tensor& temp_max,
CUDANet::Tensor& temp_sum
) = 0;
virtual CUDANet::Tensor& dense(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
) = 0;
virtual CUDANet::Tensor& conv2d(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const CUDANet::Shape in_shape,
const CUDANet::Shape padding_shape,
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
) = 0;
virtual CUDANet::Tensor& max_pool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) = 0;
virtual CUDANet::Tensor& avg_pool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) = 0;
virtual CUDANet::Tensor& batch_norm(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
) = 0;
virtual CUDANet::Tensor& concat(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) = 0;
virtual CUDANet::Tensor& add(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) = 0;
};
} // namespace CUDANet