mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
136 lines
3.9 KiB
Python
136 lines
3.9 KiB
Python
import torch
|
|
|
|
from utils import print_cpp_vector
|
|
|
|
def _conv2d(in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
inputs,
|
|
weights):
|
|
|
|
conv2d = torch.nn.Conv2d(in_channels=in_channels,
|
|
out_channels=out_channels,
|
|
kernel_size=kernel_size,
|
|
stride=stride,
|
|
padding=padding,
|
|
bias=False)
|
|
conv2d.weight = torch.nn.Parameter(weights)
|
|
|
|
output = conv2d(inputs)
|
|
|
|
# Print the output as cpp vector
|
|
output = torch.flatten(output)
|
|
return output
|
|
|
|
def gen_convd_padded_test_result():
|
|
|
|
in_channels = 3
|
|
out_channels = 2
|
|
kernel_size = 3
|
|
stride = 1
|
|
padding = 1
|
|
|
|
# Define input and kernel data as tensors
|
|
inputs = torch.tensor([
|
|
0.823, 0.217, 0.435, 0.981, 0.742,
|
|
0.109, 0.518, 0.374, 0.681, 0.147,
|
|
0.956, 0.729, 0.654, 0.087, 0.392,
|
|
0.784, 0.921, 0.543, 0.231, 0.816,
|
|
0.472, 0.614, 0.102, 0.987, 0.398,
|
|
0.051, 0.756, 0.841, 0.293, 0.128,
|
|
0.417, 0.632, 0.095, 0.184, 0.529,
|
|
0.871, 0.958, 0.213, 0.347, 0.725,
|
|
0.461, 0.012, 0.278, 0.195, 0.649,
|
|
0.853, 0.707, 0.988, 0.988, 0.322,
|
|
0.345, 0.123, 0.789, 0.123, 0.456,
|
|
0.456, 0.789, 0.123, 0.345, 0.123,
|
|
0.789, 0.123, 0.345, 0.123, 0.456,
|
|
0.123, 0.345, 0.123, 0.789, 0.123,
|
|
0.345, 0.123, 0.789, 0.123, 0.456
|
|
], dtype=torch.float).reshape(1, 3, 5, 5)
|
|
|
|
weights = torch.tensor([
|
|
0.128, 0.754, 0.987,
|
|
0.321, 0.412, 0.635,
|
|
0.298, 0.017, 0.845,
|
|
0.514, 0.729, 0.952,
|
|
0.684, 0.378, 0.159,
|
|
0.823, 0.547, 0.216,
|
|
0.983, 0.231, 0.456,
|
|
0.178, 0.654, 0.821,
|
|
0.345, 0.987, 0.123,
|
|
0.789, 0.543, 0.210,
|
|
0.012, 0.371, 0.638,
|
|
0.456, 0.198, 0.907,
|
|
0.101, 0.432, 0.759,
|
|
0.234, 0.567, 0.890,
|
|
0.543, 0.876, 0.219,
|
|
0.345, 0.678, 0.011,
|
|
0.678, 0.011, 0.345,
|
|
0.011, 0.345, 0.678
|
|
], dtype=torch.float).reshape(2, 3, 3, 3)
|
|
|
|
output = _conv2d(in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
inputs,
|
|
weights)
|
|
|
|
print_cpp_vector(output)
|
|
|
|
|
|
def gen_convd_strided_test_result():
|
|
|
|
in_channels = 2
|
|
out_channels = 2
|
|
kernel_size = 3
|
|
stride = 2
|
|
padding = 3
|
|
|
|
input = torch.tensor([
|
|
0.946, 0.879, 0.382, 0.542, 0.453,
|
|
0.128, 0.860, 0.778, 0.049, 0.974,
|
|
0.400, 0.874, 0.161, 0.271, 0.580,
|
|
0.373, 0.078, 0.366, 0.396, 0.181,
|
|
0.246, 0.112, 0.179, 0.979, 0.026,
|
|
0.598, 0.458, 0.776, 0.213, 0.199,
|
|
0.853, 0.170, 0.609, 0.269, 0.777,
|
|
0.776, 0.694, 0.430, 0.238, 0.968,
|
|
0.473, 0.303, 0.084, 0.785, 0.444,
|
|
0.464, 0.413, 0.779, 0.298, 0.783
|
|
], dtype=torch.float).reshape(1, 2, 5, 5)
|
|
weights = torch.tensor([
|
|
0.744, 0.745, 0.641,
|
|
0.164, 0.157, 0.127,
|
|
0.732, 0.761, 0.601,
|
|
0.475, 0.335, 0.499,
|
|
0.833, 0.793, 0.176,
|
|
0.822, 0.163, 0.175,
|
|
0.918, 0.340, 0.497,
|
|
0.233, 0.218, 0.847,
|
|
0.931, 0.926, 0.199,
|
|
0.510, 0.432, 0.567,
|
|
0.236, 0.397, 0.739,
|
|
0.939, 0.891, 0.006
|
|
], dtype=torch.float).reshape(2, 2, 3, 3)
|
|
|
|
output = _conv2d(in_channels,
|
|
out_channels,
|
|
kernel_size,
|
|
stride,
|
|
padding,
|
|
input,
|
|
weights)
|
|
|
|
print_cpp_vector(output)
|
|
|
|
if __name__ == "__main__":
|
|
print("Generating test results...")
|
|
print("Padded convolution test:")
|
|
gen_convd_padded_test_result()
|
|
print("Strided convolution test:")
|
|
gen_convd_strided_test_result() |