Files
CUDANet/examples/inception_v3/inception_utils.cpp

46 lines
1.5 KiB
C++

#include <iostream>
#include <opencv2/opencv.hpp>
#include <vector>
std::vector<float>
readAndNormalizeImage(const std::string &imagePath, int resizeSize, int cropSize) {
// Read the image using OpenCV
cv::Mat image = cv::imread(imagePath, cv::IMREAD_COLOR);
// Convert the image from BGR to RGB
cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
// Calculate the scaling factor
double scale = std::max(static_cast<double>(resizeSize) / image.cols, static_cast<double>(resizeSize) / image.rows);
// Resize the image
cv::Mat resized;
cv::resize(image, resized, cv::Size(), scale, scale, cv::INTER_AREA);
// Calculate the cropping coordinates
int x = (resized.cols - cropSize) / 2;
int y = (resized.rows - cropSize) / 2;
// Perform center cropping
cv::Rect roi(x, y, cropSize, cropSize);
image = resized(roi);
// Normalize the image
image.convertTo(image, CV_32FC3, 1.0 / 255.0);
cv::Mat mean(image.size(), CV_32FC3, cv::Scalar(0.485, 0.456, 0.406));
cv::Mat std(image.size(), CV_32FC3, cv::Scalar(0.229, 0.224, 0.225));
cv::subtract(image, mean, image);
cv::divide(image, std, image);
// Convert the 3D image matrix to a 1D array of floats
std::vector<float> imageData;
for (int c = 0; c < image.channels(); ++c) {
for (int i = 0; i < image.rows; ++i) {
for (int j = 0; j < image.cols; ++j) {
imageData.push_back(image.at<cv::Vec3f>(i, j)[c]);
}
}
}
return imageData;
}