mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
107 lines
2.7 KiB
Plaintext
107 lines
2.7 KiB
Plaintext
#include <iostream>
|
|
#include <vector>
|
|
|
|
#include "vector.cuh"
|
|
#include "matmul.cuh"
|
|
#include "cuda_helper.cuh"
|
|
|
|
using namespace CUDANet;
|
|
|
|
void Utils::print_vec(const float* d_vec, const unsigned int length) {
|
|
std::vector<float> h_vec(length);
|
|
CUDA_CHECK(cudaMemcpy(
|
|
h_vec.data(), d_vec, sizeof(float) * length, cudaMemcpyDeviceToHost
|
|
));
|
|
|
|
for (int i = 0; i < length; ++i) {
|
|
std::cout << h_vec[i] << ", ";
|
|
}
|
|
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
void Utils::clear(float* d_vec, const unsigned int length) {
|
|
CUDA_CHECK(cudaMemset(d_vec, 0, sizeof(float) * length));
|
|
}
|
|
|
|
void Utils::max(const float* d_vec, float* d_max, const unsigned int length) {
|
|
|
|
const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(d_vec, d_max, length);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
int remaining = grid_size;
|
|
|
|
while (remaining > 1) {
|
|
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_max, d_max, remaining);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
remaining = blocks_needed;
|
|
}
|
|
|
|
}
|
|
|
|
void Utils::sum(const float* d_vec, float* d_sum, const unsigned int length) {
|
|
|
|
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
|
|
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
|
|
d_vec, d_sum, length
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
int remaining = gridSize;
|
|
while (remaining > 1) {
|
|
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_sum, d_sum, remaining);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
remaining = blocks_needed;
|
|
}
|
|
}
|
|
|
|
void Utils::mean(const float* d_vec, float* d_mean, float *d_length, int length) {
|
|
Utils::sum(d_vec, d_mean, length);
|
|
|
|
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
|
d_mean,
|
|
d_mean,
|
|
d_length,
|
|
length
|
|
);
|
|
|
|
CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
|
|
|
|
void Utils::var(float* d_vec, float* d_var, float *d_length, const unsigned int length) {
|
|
|
|
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
|
|
Kernels::vec_vec_mul<<<gridSize, BLOCK_SIZE>>>(
|
|
d_vec,
|
|
d_vec,
|
|
d_var,
|
|
length
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
// Sum over all differences
|
|
Utils::sum(
|
|
d_var,
|
|
d_var,
|
|
length
|
|
);
|
|
|
|
// Divide by difference sum / length -> variance
|
|
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
|
d_var,
|
|
d_var,
|
|
d_length,
|
|
length
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
} |