mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
190 lines
5.4 KiB
Plaintext
190 lines
5.4 KiB
Plaintext
#include <vector>
|
|
|
|
#include "activation.cuh"
|
|
#include "batch_norm.cuh"
|
|
#include "cuda_helper.cuh"
|
|
#include "layer.cuh"
|
|
#include "matmul.cuh"
|
|
#include "vector.cuh"
|
|
|
|
using namespace CUDANet::Layers;
|
|
|
|
BatchNorm2D::BatchNorm2D(
|
|
dim2d inputSize,
|
|
int inputChannels,
|
|
float epsilon,
|
|
ActivationType activationType
|
|
)
|
|
: inputSize(inputSize), inputChannels(inputChannels) {
|
|
activation = new Activation(
|
|
activationType, inputSize.first * inputSize.second * inputChannels
|
|
);
|
|
|
|
d_output = nullptr;
|
|
CUDA_CHECK(cudaMalloc(
|
|
(void **)&d_output,
|
|
sizeof(float) * inputSize.first * inputSize.second * inputChannels
|
|
));
|
|
|
|
d_mean = nullptr;
|
|
CUDA_CHECK(cudaMalloc(
|
|
(void **)&d_mean, sizeof(float) * inputSize.first * inputSize.second
|
|
));
|
|
|
|
d_mean_sub = nullptr;
|
|
CUDA_CHECK(cudaMalloc(
|
|
(void **)&d_mean_sub, sizeof(float) * inputSize.first * inputSize.second
|
|
));
|
|
|
|
d_sqrt_var = nullptr;
|
|
CUDA_CHECK(cudaMalloc(
|
|
(void **)&d_sqrt_var, sizeof(float) * inputSize.first * inputSize.second
|
|
));
|
|
|
|
d_weights = nullptr;
|
|
CUDA_CHECK(cudaMalloc((void **)&d_weights, sizeof(float) * inputChannels));
|
|
|
|
d_biases = nullptr;
|
|
CUDA_CHECK(cudaMalloc((void **)&d_biases, sizeof(float) * inputChannels));
|
|
|
|
d_length = nullptr;
|
|
float length = (float)inputSize.first * inputSize.second;
|
|
CUDA_CHECK(cudaMalloc((void **)&d_length, sizeof(float)));
|
|
CUDA_CHECK(
|
|
cudaMemcpy(d_length, &length, sizeof(float), cudaMemcpyHostToDevice)
|
|
);
|
|
|
|
d_epsilon = nullptr;
|
|
CUDA_CHECK(cudaMalloc((void **)&d_epsilon, sizeof(float)));
|
|
CUDA_CHECK(
|
|
cudaMemcpy(d_epsilon, &epsilon, sizeof(float), cudaMemcpyHostToDevice)
|
|
);
|
|
|
|
weights.resize(inputChannels);
|
|
biases.resize(inputChannels);
|
|
|
|
initializeWeights();
|
|
initializeBiases();
|
|
|
|
toCuda();
|
|
|
|
gridSize =
|
|
(inputSize.first * inputSize.second + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
}
|
|
|
|
BatchNorm2D::~BatchNorm2D() {
|
|
cudaFree(d_output);
|
|
cudaFree(d_mean);
|
|
cudaFree(d_mean_sub);
|
|
cudaFree(d_sqrt_var);
|
|
cudaFree(d_weights);
|
|
cudaFree(d_biases);
|
|
cudaFree(d_length);
|
|
cudaFree(d_epsilon);
|
|
}
|
|
|
|
void BatchNorm2D::initializeWeights() {
|
|
std::fill(weights.begin(), weights.end(), 1.0f);
|
|
}
|
|
|
|
void BatchNorm2D::initializeBiases() {
|
|
std::fill(biases.begin(), biases.end(), 0.0f);
|
|
}
|
|
|
|
void BatchNorm2D::setWeights(const float *weights_input) {
|
|
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
|
toCuda();
|
|
}
|
|
|
|
std::vector<float> BatchNorm2D::getWeights() {
|
|
return weights;
|
|
}
|
|
|
|
void BatchNorm2D::setBiases(const float *biases_input) {
|
|
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
|
toCuda();
|
|
}
|
|
|
|
std::vector<float> BatchNorm2D::getBiases() {
|
|
return biases;
|
|
}
|
|
|
|
void BatchNorm2D::toCuda() {
|
|
CUDA_CHECK(cudaMemcpy(
|
|
d_weights, weights.data(), sizeof(float) * inputChannels,
|
|
cudaMemcpyHostToDevice
|
|
));
|
|
CUDA_CHECK(cudaMemcpy(
|
|
d_biases, biases.data(), sizeof(float) * inputChannels,
|
|
cudaMemcpyHostToDevice
|
|
));
|
|
}
|
|
|
|
int BatchNorm2D::getInputSize() {
|
|
return inputSize.first * inputSize.second * inputChannels;
|
|
}
|
|
|
|
int BatchNorm2D::getOutputSize() {
|
|
return inputSize.first * inputSize.second * inputChannels;
|
|
}
|
|
|
|
float *BatchNorm2D::forward(const float *d_input) {
|
|
// Compute per-channel batch normalization
|
|
for (int i = 0; i < inputChannels; i++) {
|
|
// Compute mean
|
|
Utils::mean(
|
|
d_input + i * inputSize.first * inputSize.second, d_mean, d_length,
|
|
inputSize.first * inputSize.second
|
|
);
|
|
|
|
// Subtract mean from input
|
|
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
|
d_input + i * inputSize.first * inputSize.second, d_mean_sub,
|
|
&d_mean[0], inputSize.first * inputSize.second
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
// Compute variance
|
|
Utils::var(
|
|
d_mean_sub, d_sqrt_var, d_length, inputSize.first * inputSize.second
|
|
);
|
|
|
|
// Add epsilon to variance to avoid division by zero
|
|
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
|
|
d_sqrt_var, d_sqrt_var, &d_epsilon[0],
|
|
inputSize.first * inputSize.second
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
// Compute squared root of variance
|
|
Kernels::vec_sqrt<<<gridSize, BLOCK_SIZE>>>(
|
|
d_sqrt_var, d_sqrt_var, inputSize.first * inputSize.second
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
// Divide by squared root of variance
|
|
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
|
d_mean_sub, d_output + i * inputSize.first * inputSize.second,
|
|
&d_sqrt_var[0], inputSize.first * inputSize.second
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
// Multiply by weights
|
|
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
|
|
d_output + i * inputSize.first * inputSize.second,
|
|
d_output + i * inputSize.first * inputSize.second, &d_weights[i],
|
|
inputSize.first * inputSize.second
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
// Add biases
|
|
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
|
|
d_output + i * inputSize.first * inputSize.second,
|
|
d_output + i * inputSize.first * inputSize.second, &d_biases[i],
|
|
inputSize.first * inputSize.second
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
}
|
|
|
|
return d_output;
|
|
} |