mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
117 lines
3.5 KiB
C++
117 lines
3.5 KiB
C++
#include <cudanet.cuh>
|
|
#include <iostream>
|
|
|
|
int main(int argc, const char *const argv[]) {
|
|
if (argc != 3) {
|
|
std::cerr << "Usage: " << argv[0] << "<model_weights_path> <image_path>"
|
|
<< std::endl;
|
|
return 1; // Return error code indicating incorrect usage
|
|
}
|
|
|
|
std::cout << "Loading model..." << std::endl;
|
|
}
|
|
|
|
class BasicConv2d : public CUDANet::Module {
|
|
public:
|
|
BasicConv2d(
|
|
const int inputSize,
|
|
const int inputChannels,
|
|
const int outputChannels,
|
|
const int kernelSize,
|
|
const int stride,
|
|
const int padding,
|
|
const std::string &prefix
|
|
) {
|
|
// Create the convolution layer
|
|
CUDANet::Layers::Conv2d *conv = new CUDANet::Layers::Conv2d(
|
|
inputSize, inputChannels, kernelSize, stride, outputChannels,
|
|
padding, CUDANet::Layers::ActivationType::NONE
|
|
);
|
|
|
|
int batchNormSize = conv->getOutputSize();
|
|
|
|
CUDANet::Layers::BatchNorm2D *batchNorm = new CUDANet::Layers::BatchNorm2D(
|
|
batchNormSize, outputChannels, 1e-3f,
|
|
CUDANet::Layers::ActivationType::RELU
|
|
);
|
|
|
|
addLayer(prefix + ".conv", conv);
|
|
addLayer(prefix + ".bn", batchNorm);
|
|
}
|
|
|
|
float* forward(const float* d_input) {
|
|
|
|
for (auto& layer : layers) {
|
|
d_input = layer.second->forward(d_input);
|
|
}
|
|
return d_input;
|
|
}
|
|
|
|
};
|
|
|
|
class InceptionA : public CUDANet::Module {
|
|
public:
|
|
InceptionA(
|
|
const int inputSize,
|
|
const int inputChannels,
|
|
const int poolFeatures,
|
|
const std::string &prefix
|
|
)
|
|
: inputSize(inputSize),
|
|
inputChannels(inputChannels),
|
|
poolFeatures(poolFeatures) {
|
|
|
|
// Branch 1x1
|
|
CUDANet::Module *branch1x1 = new BasicConv2d(
|
|
inputSize, inputChannels, 64, 1, 1, 0, prefix + ".branch1x1"
|
|
);
|
|
addLayer("", branch1x1);
|
|
|
|
// Branch 5x5
|
|
CUDANet::Module *branch5x5_1 = new BasicConv2d(
|
|
inputSize, inputChannels, 48, 1, 1, 0, prefix + ".branch5x5_1"
|
|
);
|
|
addLayer("", branch5x5_1);
|
|
CUDANet::Module *branch5x5_2 = new BasicConv2d(
|
|
inputSize, 48, 64, 5, 1, 2, prefix + ".branch5x5_2"
|
|
);
|
|
addLayer("", branch5x5_2);
|
|
|
|
// Branch 3x3
|
|
CUDANet::Module *branch3x3_1 = new BasicConv2d(
|
|
inputSize, inputChannels, 64, 1, 1, 0, prefix + ".branch3x3_1"
|
|
);
|
|
addLayer("", branch3x3_1);
|
|
CUDANet::Module *branch3x3_2 = new BasicConv2d(
|
|
inputSize, 64, 96, 3, 1, 1, prefix + ".branch3x3_2"
|
|
);
|
|
addLayer("", branch3x3_2);
|
|
CUDANet::Module *branch3x3_3 = new BasicConv2d(
|
|
inputSize, 96, 96, 3, 1, 1, prefix + ".branch3x3_3"
|
|
);
|
|
addLayer("", branch3x3_3);
|
|
|
|
// Branch Pool
|
|
CUDANet::Module *branchPool = new BasicConv2d(
|
|
inputSize, inputChannels, poolFeatures, 1, 1, 0, prefix + ".branchPool"
|
|
);
|
|
addLayer("", branchPool);
|
|
|
|
// Concat
|
|
concat_1 = new CUDANet::Layers::Concat(
|
|
branch1x1->getOutputSize(), branch5x5_2->getOutputSize()
|
|
);
|
|
concat_2 = new CUDANet::Layers::Concat(
|
|
concat_1->getOutputSize(), branch3x3_3->getOutputSize()
|
|
);
|
|
|
|
}
|
|
|
|
private:
|
|
int inputSize;
|
|
int inputChannels;
|
|
int poolFeatures;
|
|
|
|
CUDANet::Layers::Concat *concat_1;
|
|
CUDANet::Layers::Concat *concat_2;
|
|
}; |