mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 06:14:22 +00:00
101 lines
2.3 KiB
C++
101 lines
2.3 KiB
C++
#include <stdexcept>
|
|
|
|
#include "avg_pooling.hpp"
|
|
|
|
using namespace CUDANet::Layers;
|
|
|
|
AvgPooling2d::AvgPooling2d(
|
|
shape2d inputSize,
|
|
int nChannels,
|
|
shape2d poolingSize,
|
|
shape2d stride,
|
|
shape2d padding,
|
|
ActivationType activationType
|
|
)
|
|
: inputSize(inputSize),
|
|
nChannels(nChannels),
|
|
poolingSize(poolingSize),
|
|
stride(stride),
|
|
padding(padding) {
|
|
outputSize = {
|
|
(inputSize.first + 2 * padding.first - poolingSize.first) /
|
|
stride.first +
|
|
1,
|
|
(inputSize.second + 2 * padding.second - poolingSize.second) /
|
|
stride.second +
|
|
1
|
|
};
|
|
|
|
activation = new Activation(
|
|
activationType, outputSize.first * outputSize.second * nChannels
|
|
);
|
|
|
|
#ifdef USE_CUDA
|
|
initCUDA();
|
|
#endif
|
|
}
|
|
|
|
AvgPooling2d::~AvgPooling2d() {
|
|
#ifdef USE_CUDA
|
|
delCUDA();
|
|
#endif
|
|
delete activation;
|
|
}
|
|
|
|
float* AvgPooling2d::forwardCPU(const float* input) {
|
|
throw std::logic_error("Not implemented");
|
|
}
|
|
|
|
float* AvgPooling2d::forward(const float* input) {
|
|
#ifdef USE_CUDA
|
|
return forwardCUDA(input);
|
|
#else
|
|
return forwardCPU(input);
|
|
#endif
|
|
}
|
|
|
|
int AvgPooling2d::get_output_size() {
|
|
return outputSize.first * outputSize.second * nChannels;
|
|
}
|
|
|
|
int AvgPooling2d::getInputSize() {
|
|
return inputSize.first * inputSize.second * nChannels;
|
|
}
|
|
|
|
shape2d AvgPooling2d::getOutputDims() {
|
|
return outputSize;
|
|
}
|
|
|
|
AdaptiveAvgPooling2d::AdaptiveAvgPooling2d(
|
|
shape2d inputShape,
|
|
int nChannels,
|
|
shape2d outputShape,
|
|
ActivationType activationType
|
|
)
|
|
: AvgPooling2d(
|
|
inputShape,
|
|
nChannels,
|
|
{1, 1},
|
|
{1, 1},
|
|
{0, 0},
|
|
activationType
|
|
) {
|
|
stride = {
|
|
inputShape.first / outputShape.first,
|
|
inputShape.second / outputShape.second
|
|
};
|
|
poolingSize = {
|
|
inputShape.first - (outputShape.first - 1) * stride.first,
|
|
inputShape.second - (outputShape.second - 1) * stride.second
|
|
};
|
|
padding = {(poolingSize.first - 1) / 2, (poolingSize.second - 1) / 2};
|
|
outputSize = outputShape;
|
|
|
|
activation = new Activation(
|
|
activationType, outputSize.first * outputSize.second * nChannels
|
|
);
|
|
|
|
#ifdef USE_CUDA
|
|
initCUDA();
|
|
#endif
|
|
} |