Files
CUDANet/include/backend.hpp

115 lines
3.1 KiB
C++

#pragma once
#include <memory>
#include "shape.hpp"
namespace CUDANet {
// Forward declaration
class Tensor;
class Backend;
enum BackendType { CUDA_BACKEND, CPU_BACKEND };
struct BackendConfig {
int device_id = 0;
};
class BackendFactory {
public:
static std::unique_ptr<Backend> create(BackendType backend_type, const BackendConfig& config);
};
class Backend {
public:
// Memory management
virtual void* allocate(size_t bytes) = 0;
virtual void deallocate(void* ptr) = 0;
// Tensor ops
virtual void print(const CUDANet::Tensor& input) = 0;
virtual void zero(CUDANet::Tensor& input) = 0;
virtual void fill(CUDANet::Tensor& input, int data) = 0;
virtual void
copy_to_device(CUDANet::Tensor& tensor, void* data, size_t size) = 0;
virtual void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) = 0;
virtual void max(const CUDANet::Tensor& input, CUDANet::Tensor& max) = 0;
// Layer ops
virtual void relu(CUDANet::Tensor& tensor) = 0;
virtual void sigmoid(CUDANet::Tensor& tensor) = 0;
virtual void softmax(
CUDANet::Tensor& tensor,
CUDANet::Tensor& temp_max,
CUDANet::Tensor& temp_sum
) = 0;
virtual CUDANet::Tensor& dense(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
) = 0;
virtual CUDANet::Tensor& conv2d(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const CUDANet::Shape in_shape,
const CUDANet::Shape padding_shape,
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
) = 0;
virtual CUDANet::Tensor& max_pool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) = 0;
virtual CUDANet::Tensor& avg_pool2d(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) = 0;
virtual CUDANet::Tensor& batch_norm(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
) = 0;
virtual CUDANet::Tensor& concat(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) = 0;
virtual CUDANet::Tensor& add(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) = 0;
};
} // namespace CUDANet