mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
282 lines
8.1 KiB
Plaintext
282 lines
8.1 KiB
Plaintext
#include <cuda_runtime.h>
|
|
#include <gtest/gtest.h>
|
|
|
|
#include <vector>
|
|
|
|
#include "avg_pooling.cuh"
|
|
|
|
class AvgPoolingLayerTest : public ::testing::Test {
|
|
protected:
|
|
shape2d inputSize;
|
|
int nChannels;
|
|
shape2d poolingSize;
|
|
shape2d stride;
|
|
shape2d padding;
|
|
std::vector<float> input;
|
|
std::vector<float> expected;
|
|
|
|
float *d_input;
|
|
float *d_output;
|
|
CUDANet::Layers::AvgPooling2d *avgPoolingLayer;
|
|
|
|
virtual void SetUp() override {
|
|
d_input = nullptr;
|
|
d_output = nullptr;
|
|
avgPoolingLayer = nullptr;
|
|
}
|
|
|
|
virtual void TearDown() override {
|
|
if (d_input) {
|
|
cudaFree(d_input);
|
|
}
|
|
}
|
|
|
|
void runTest() {
|
|
cudaError_t cudaStatus;
|
|
|
|
avgPoolingLayer = new CUDANet::Layers::AvgPooling2d(
|
|
inputSize, nChannels, poolingSize, stride, padding,
|
|
CUDANet::Layers::ActivationType::NONE
|
|
);
|
|
|
|
cudaStatus = cudaMalloc(
|
|
(void **)&d_input,
|
|
sizeof(float) * inputSize.first * inputSize.second * nChannels
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
cudaStatus = cudaMemcpy(
|
|
d_input, input.data(),
|
|
sizeof(float) * inputSize.first * inputSize.second * nChannels,
|
|
cudaMemcpyHostToDevice
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
d_output = avgPoolingLayer->forward(d_input);
|
|
|
|
int outputSize = avgPoolingLayer->getOutputSize();
|
|
|
|
std::vector<float> output(outputSize);
|
|
cudaStatus = cudaMemcpy(
|
|
output.data(), d_output, sizeof(float) * outputSize,
|
|
cudaMemcpyDeviceToHost
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
for (int i = 0; i < output.size(); ++i) {
|
|
EXPECT_NEAR(expected[i], output[i], 1e-4);
|
|
}
|
|
|
|
delete avgPoolingLayer;
|
|
}
|
|
};
|
|
|
|
TEST_F(AvgPoolingLayerTest, AvgPoolForwardTest) {
|
|
inputSize = {4, 4};
|
|
nChannels = 2;
|
|
poolingSize = {2, 2};
|
|
stride = {2, 2};
|
|
padding = {0, 0};
|
|
|
|
input = {
|
|
// clang-format off
|
|
// Channel 0
|
|
0.573f, 0.619f, 0.732f, 0.055f,
|
|
0.243f, 0.316f, 0.573f, 0.619f,
|
|
0.712f, 0.055f, 0.243f, 0.316f,
|
|
0.573f, 0.619f, 0.742f, 0.055f,
|
|
// Channel 1
|
|
0.473f, 0.919f, 0.107f, 0.073f,
|
|
0.073f, 0.362f, 0.973f, 0.059f,
|
|
0.473f, 0.455f, 0.283f, 0.416f,
|
|
0.532f, 0.819f, 0.732f, 0.850f
|
|
// clang-format on
|
|
};
|
|
|
|
expected = {0.43775f, 0.49475f, 0.48975f, 0.339f,
|
|
0.45675f, 0.303f, 0.56975f, 0.57025f};
|
|
|
|
runTest();
|
|
}
|
|
|
|
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareInputTest) {
|
|
inputSize = {4, 6}; // Non-square input
|
|
nChannels = 2;
|
|
poolingSize = {2, 2};
|
|
stride = {2, 2};
|
|
padding = {0, 0};
|
|
|
|
input = {// Channel 0
|
|
0.573f, 0.619f, 0.732f, 0.055f, 0.123f, 0.234f, 0.243f, 0.316f,
|
|
0.573f, 0.619f, 0.456f, 0.789f, 0.712f, 0.055f, 0.243f, 0.316f,
|
|
0.654f, 0.987f, 0.573f, 0.619f, 0.742f, 0.055f, 0.321f, 0.654f,
|
|
// Channel 1
|
|
0.473f, 0.919f, 0.107f, 0.073f, 0.321f, 0.654f, 0.073f, 0.362f,
|
|
0.973f, 0.059f, 0.654f, 0.987f, 0.473f, 0.455f, 0.283f, 0.416f,
|
|
0.789f, 0.123f, 0.532f, 0.819f, 0.732f, 0.850f, 0.987f, 0.321f
|
|
};
|
|
|
|
expected = {0.43775f, 0.49475f, 0.4005f, 0.48975f, 0.339f, 0.654f,
|
|
0.45675f, 0.303f, 0.654f, 0.56975f, 0.57025f, 0.555f};
|
|
|
|
runTest();
|
|
}
|
|
|
|
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquarePoolingTest) {
|
|
inputSize = {4, 4};
|
|
nChannels = 2;
|
|
poolingSize = {2, 3}; // Non-square pooling
|
|
stride = {2, 2};
|
|
padding = {0, 0};
|
|
|
|
input = {// Channel 0
|
|
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
|
|
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
|
|
// Channel 1
|
|
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
|
|
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
|
|
};
|
|
|
|
expected = {0.50933f, 0.49067f, 0.4845f, 0.549f};
|
|
|
|
runTest();
|
|
}
|
|
|
|
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareStrideTest) {
|
|
inputSize = {4, 4};
|
|
nChannels = 2;
|
|
poolingSize = {2, 2};
|
|
stride = {1, 2}; // Non-square stride
|
|
padding = {0, 0};
|
|
|
|
input = {// Channel 0
|
|
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
|
|
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
|
|
// Channel 1
|
|
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
|
|
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
|
|
};
|
|
|
|
expected = {0.43775f, 0.49475f, 0.3315f, 0.43775f, 0.48975f, 0.339f,
|
|
0.45675f, 0.303f, 0.34075f, 0.43275f, 0.56975f, 0.57025f};
|
|
|
|
runTest();
|
|
}
|
|
|
|
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquarePaddingTest) {
|
|
inputSize = {4, 4};
|
|
nChannels = 2;
|
|
poolingSize = {2, 2};
|
|
stride = {2, 2};
|
|
padding = {1, 0}; // Non-square padding
|
|
|
|
input = {// Channel 0
|
|
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
|
|
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
|
|
// Channel 1
|
|
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
|
|
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
|
|
};
|
|
|
|
expected = {0.298f, 0.19675f, 0.3315f, 0.43775f, 0.298f, 0.19925f,
|
|
0.348f, 0.045f, 0.34075f, 0.43275f, 0.33775f, 0.3955f};
|
|
|
|
runTest();
|
|
}
|
|
|
|
|
|
class AdaptiveAvgPoolingLayerTest : public ::testing::Test {
|
|
protected:
|
|
shape2d inputSize;
|
|
shape2d outputSize;
|
|
int nChannels;
|
|
std::vector<float> input;
|
|
std::vector<float> expected;
|
|
|
|
float* d_input;
|
|
float* d_output;
|
|
CUDANet::Layers::AdaptiveAvgPooling2d* adaptiveAvgPoolingLayer;
|
|
|
|
virtual void SetUp() override {
|
|
d_input = nullptr;
|
|
d_output = nullptr;
|
|
adaptiveAvgPoolingLayer = nullptr;
|
|
}
|
|
|
|
virtual void TearDown() override {
|
|
cudaFree(d_input);
|
|
}
|
|
|
|
void runTest() {
|
|
cudaError_t cudaStatus;
|
|
|
|
adaptiveAvgPoolingLayer = new CUDANet::Layers::AdaptiveAvgPooling2d(
|
|
inputSize, nChannels, outputSize, CUDANet::Layers::ActivationType::NONE
|
|
);
|
|
|
|
cudaStatus = cudaMalloc(
|
|
(void**)&d_input,
|
|
sizeof(float) * inputSize.first * inputSize.second * nChannels
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
cudaStatus = cudaMemcpy(
|
|
d_input, input.data(),
|
|
sizeof(float) * inputSize.first * inputSize.second * nChannels,
|
|
cudaMemcpyHostToDevice
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
d_output = adaptiveAvgPoolingLayer->forward(d_input);
|
|
|
|
int outputSize = adaptiveAvgPoolingLayer->getOutputSize();
|
|
|
|
std::vector<float> output(outputSize);
|
|
cudaStatus = cudaMemcpy(
|
|
output.data(), d_output, sizeof(float) * outputSize,
|
|
cudaMemcpyDeviceToHost
|
|
);
|
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
|
|
|
for (int i = 0; i < output.size(); ++i) {
|
|
EXPECT_NEAR(expected[i], output[i], 1e-5);
|
|
}
|
|
|
|
delete adaptiveAvgPoolingLayer;
|
|
}
|
|
};
|
|
|
|
TEST_F(AdaptiveAvgPoolingLayerTest, AdaptiveAvgPoolForwardTest) {
|
|
inputSize = {4, 4};
|
|
outputSize = {2, 2};
|
|
nChannels = 2;
|
|
|
|
input = {
|
|
// clang-format off
|
|
// Channel 0
|
|
0.573f, 0.619f, 0.732f, 0.055f,
|
|
0.243f, 0.316f, 0.573f, 0.619f,
|
|
0.712f, 0.055f, 0.243f, 0.316f,
|
|
0.573f, 0.619f, 0.742f, 0.055f,
|
|
// Channel 1
|
|
0.473f, 0.919f, 0.107f, 0.073f,
|
|
0.073f, 0.362f, 0.973f, 0.059f,
|
|
0.473f, 0.455f, 0.283f, 0.416f,
|
|
0.532f, 0.819f, 0.732f, 0.850f
|
|
// clang-format on
|
|
};
|
|
|
|
expected = {
|
|
// clang-format off
|
|
// Channel 0
|
|
0.43775f, 0.49475f,
|
|
0.48975f, 0.339f,
|
|
// Channel 1
|
|
0.45675f, 0.303f,
|
|
0.56975f, 0.57025f
|
|
// clang-format on
|
|
};
|
|
|
|
runTest();
|
|
}
|