Files
CUDANet/test/layers/test_dense.cu
2024-03-05 18:41:35 +01:00

213 lines
5.8 KiB
Plaintext

#include <cuda_runtime_api.h>
#include <gtest/gtest.h>
#include <iostream>
#include "activations.cuh"
#include "dense.cuh"
class DenseLayerTest : public::testing::Test {
protected:
Layers::Dense commonTestSetup(
int inputSize,
int outputSize,
std::vector<float>& input,
std::vector<std::vector<float>>& weights,
std::vector<float>& biases,
float*& d_input,
float*& d_output,
Activation activation
) {
// Create Dense layer
Layers::Dense denseLayer(
inputSize, outputSize, activation
);
// Set weights and biases
denseLayer.setWeights(weights);
denseLayer.setBiases(biases);
// Allocate device memory
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * input.size());
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * outputSize);
EXPECT_EQ(cudaStatus, cudaSuccess);
// Copy input to device
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(), cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
return denseLayer;
}
void commonTestTeardown(float* d_input, float* d_output) {
// Free device memory
cudaFree(d_input);
cudaFree(d_output);
}
cudaError_t cudaStatus;
};
TEST_F(DenseLayerTest, Init) {
for (int i = 1; i < 100; ++i) {
for (int j = 1; j < 100; ++j) {
int inputSize = i;
int outputSize = j;
Layers::Dense denseLayer(
inputSize, outputSize, SIGMOID
);
}
}
}
TEST_F(DenseLayerTest, setWeights) {
int inputSize = 4;
int outputSize = 5;
std::vector<std::vector<float>> weights = {
{0.5f, 1.0f, 0.2f, 0.8f},
{1.2f, 0.3f, 1.5f, 0.4f},
{0.7f, 1.8f, 0.9f, 0.1f},
{0.4f, 2.0f, 0.6f, 1.1f},
{1.3f, 0.5f, 0.0f, 1.7f}
};
Layers::Dense denseLayer(inputSize, outputSize, SIGMOID);
denseLayer.setWeights(weights);
}
TEST_F(DenseLayerTest, ForwardUnitWeightMatrixLinear) {
int inputSize = 3;
int outputSize = 3;
std::vector<float> input = {1.0f, 2.0f, 3.0f};
std::vector<std::vector<float>> weights(
inputSize, std::vector<float>(outputSize, 0.0f)
);
for (int i = 0; i < inputSize; ++i) {
for (int j = 0; j < outputSize; ++j) {
if (i == j) {
weights[i][j] = 1.0f;
}
}
}
std::vector<float> biases(outputSize, 1.0f);
float* d_input;
float* d_output;
Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights, biases, d_input, d_output, LINEAR
);
denseLayer.forward(d_input, d_output);
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize, cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
// Check if the output is a zero vector
EXPECT_FLOAT_EQ(output[0], 2.0f);
EXPECT_FLOAT_EQ(output[1], 3.0f);
EXPECT_FLOAT_EQ(output[2], 4.0f);
commonTestTeardown(d_input, d_output);
}
TEST_F(DenseLayerTest, ForwardRandomWeightMatrixRelu) {
int inputSize = 5;
int outputSize = 4;
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, -5.0f};
std::vector<std::vector<float>> weights = {
{0.5f, 1.2f, 0.7f, 0.4f, 1.3f},
{1.0f, 0.3f, 1.8f, 2.0f, 0.5f},
{0.2f, 1.5f, 0.9f, 0.6f, 0.0f},
{0.8f, 0.4f, 0.1f, 1.1f, 1.7f}
};
std::vector<float> biases = {0.2f, 0.5f, 0.7f, -1.1f};
float* d_input;
float* d_output;
Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights, biases, d_input, d_output, RELU
);
denseLayer.forward(d_input, d_output);
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize, cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
// weights * inputs = 0.1, 12.5, 8.3, -2.2
// + biases = 0.3, 13, 9, -3.3
std::vector<float> expectedOutput = {0.3f, 13.0f, 9.0f, 0.0f};
for (int i = 0; i < outputSize; ++i) {
EXPECT_NEAR(
output[i], expectedOutput[i], 1e-4
); // Allow small tolerance for floating-point comparison
}
commonTestTeardown(d_input, d_output);
}
TEST_F(DenseLayerTest, ForwardRandomWeightMatrixSigmoid) {
int inputSize = 5;
int outputSize = 4;
std::vector<float> input = {0.1f, 0.2f, 0.3f, 0.4f, 0.5f};
std::vector<std::vector<float>> weights = {
{0.8f, 0.7f, 0.7f, 0.3f, 0.8f},
{0.1f, 0.4f, 0.8f, 0.0f, 0.2f},
{0.2f, 0.5f, 0.7f, 0.3f, 0.0f},
{0.1f, 0.7f, 0.6f, 1.0f, 0.4f}
};
std::vector<float> biases = {0.1f, 0.2f, 0.3f, 0.4f};
float* d_input;
float* d_output;
Layers::Dense denseLayer = commonTestSetup(
inputSize, outputSize, input, weights, biases, d_input, d_output,
SIGMOID
);
denseLayer.forward(d_input, d_output);
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize, cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
// weights * input = 0.95, 0.43, 0.45, 0.93
// + biases = 1.05, 0.63, 0.75, 1.33
// sigmoid = 0.740775, 0.652489, 0.679179, 0.790841
std::vector<float> expectedOutput = {
0.740775f, 0.652489f, 0.679179f, 0.790841f
};
for (int i = 0; i < outputSize; ++i) {
EXPECT_NEAR(output[i], expectedOutput[i], 1e-5);
}
commonTestTeardown(d_input, d_output);
}