mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
246 lines
7.6 KiB
C++
246 lines
7.6 KiB
C++
#include "model.hpp"
|
|
|
|
#include <fstream>
|
|
#include <iostream>
|
|
#include <iomanip>
|
|
#include <string>
|
|
#include <unordered_map>
|
|
#include <vector>
|
|
|
|
#include "input.cuh"
|
|
#include "layer.cuh"
|
|
|
|
using namespace CUDANet;
|
|
|
|
Model::Model(
|
|
const shape2d inputSize,
|
|
const int inputChannels,
|
|
const int outputSize
|
|
)
|
|
: inputSize(inputSize),
|
|
inputChannels(inputChannels),
|
|
outputSize(outputSize),
|
|
layers(std::vector<std::pair<std::string, Layers::SequentialLayer*>>()),
|
|
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
|
|
inputLayer =
|
|
new Layers::Input(inputSize.first * inputSize.second * inputChannels);
|
|
outputLayer = new Layers::Output(outputSize);
|
|
};
|
|
|
|
Model::Model(const Model& other)
|
|
: inputSize(other.inputSize),
|
|
inputChannels(other.inputChannels),
|
|
outputSize(other.outputSize),
|
|
layers(std::vector<std::pair<std::string, Layers::SequentialLayer*>>()),
|
|
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
|
|
inputLayer = new Layers::Input(*other.inputLayer);
|
|
outputLayer = new Layers::Output(*other.outputLayer);
|
|
}
|
|
|
|
Model::~Model() {
|
|
delete inputLayer;
|
|
delete outputLayer;
|
|
for (const auto& layer : layers) {
|
|
delete layer.second;
|
|
}
|
|
};
|
|
|
|
float* Model::predict(const float* input) {
|
|
float* d_input = inputLayer->forward(input);
|
|
|
|
for (auto& layer : layers) {
|
|
d_input = layer.second->forward(d_input);
|
|
}
|
|
|
|
return outputLayer->forward(d_input);
|
|
}
|
|
|
|
void Model::addLayer(const std::string& name, Layers::SequentialLayer* layer) {
|
|
const Module* module = dynamic_cast<Module*>(layer);
|
|
|
|
if (module != nullptr) {
|
|
for (const auto& moduleLayer : module->getLayers()) {
|
|
layerMap[moduleLayer.first] = moduleLayer.second;
|
|
layers.push_back({moduleLayer.first, moduleLayer.second});
|
|
}
|
|
|
|
return;
|
|
}
|
|
|
|
layers.push_back({name, layer});
|
|
layerMap[name] = layer;
|
|
}
|
|
|
|
Layers::SequentialLayer* Model::getLayer(const std::string& name) {
|
|
return layerMap[name];
|
|
}
|
|
|
|
void Model::loadWeights(const std::string& path) {
|
|
std::ifstream file(path, std::ios::binary);
|
|
|
|
if (!file.is_open()) {
|
|
std::cerr << "Failed to open file: " << path << std::endl;
|
|
return;
|
|
}
|
|
|
|
u_short version;
|
|
file.read(reinterpret_cast<char*>(&version), sizeof(version));
|
|
|
|
if (version != 1) {
|
|
std::cerr << "Unsupported model version: " << version << std::endl;
|
|
return;
|
|
}
|
|
|
|
u_int64_t headerSize;
|
|
file.read(reinterpret_cast<char*>(&headerSize), sizeof(headerSize));
|
|
|
|
std::string header(headerSize, '\0');
|
|
file.read(&header[0], headerSize);
|
|
|
|
std::vector<TensorInfo> tensorInfos;
|
|
size_t pos = 0;
|
|
|
|
while (pos < header.size()) {
|
|
size_t nextPos = header.find('\n', pos);
|
|
if (nextPos == std::string::npos) break;
|
|
|
|
std::string line = header.substr(pos, nextPos - pos);
|
|
pos = nextPos + 1;
|
|
|
|
size_t commaPos = line.find(',');
|
|
if (commaPos == std::string::npos) continue;
|
|
|
|
// Parse tensor name into name and type
|
|
std::string nameStr = line.substr(0, commaPos);
|
|
size_t dotPos = nameStr.find_last_of('.');
|
|
if (dotPos == std::string::npos) continue;
|
|
std::string name = nameStr.substr(0, dotPos);
|
|
TensorType type = nameStr.substr(dotPos + 1) == "weight"
|
|
? TensorType::WEIGHT
|
|
: TensorType::BIAS;
|
|
|
|
line = line.substr(commaPos + 1);
|
|
|
|
commaPos = line.find(',');
|
|
if (commaPos == std::string::npos) continue;
|
|
|
|
int size = std::stoi(line.substr(0, commaPos));
|
|
int offset = std::stoi(line.substr(commaPos + 1));
|
|
|
|
tensorInfos.push_back({name, type, size, offset});
|
|
}
|
|
|
|
for (const auto& tensorInfo : tensorInfos) {
|
|
std::vector<float> values(tensorInfo.size);
|
|
|
|
file.seekg(
|
|
sizeof(version) + sizeof(headerSize) + header.size() +
|
|
tensorInfo.offset
|
|
);
|
|
file.read(
|
|
reinterpret_cast<char*>(values.data()),
|
|
tensorInfo.size * sizeof(float)
|
|
);
|
|
|
|
if (layerMap.find(tensorInfo.name) != layerMap.end()) {
|
|
Layers::WeightedLayer* wLayer =
|
|
dynamic_cast<Layers::WeightedLayer*>(layerMap[tensorInfo.name]);
|
|
|
|
if (wLayer == nullptr) {
|
|
std::cerr << "Layer: " << tensorInfo.name
|
|
<< " does not have weights" << std::endl;
|
|
continue;
|
|
}
|
|
|
|
if (tensorInfo.type == TensorType::WEIGHT) {
|
|
if (wLayer->getWeights().size() != values.size()) {
|
|
std::cerr << "Layer: " << tensorInfo.name
|
|
<< " has incorrect number of weights, expected "
|
|
<< wLayer->getWeights().size() << " but got "
|
|
<< values.size() << ", skipping" << std::endl;
|
|
continue;
|
|
}
|
|
|
|
wLayer->setWeights(values.data());
|
|
} else if (tensorInfo.type == TensorType::BIAS) {
|
|
if (wLayer->getBiases().size() != values.size()) {
|
|
std::cerr << "Layer: " << tensorInfo.name
|
|
<< " has incorrect number of biases, expected "
|
|
<< wLayer->getBiases().size() << " but got "
|
|
<< values.size() << ", skipping" << std::endl;
|
|
continue;
|
|
}
|
|
|
|
wLayer->setBiases(values.data());
|
|
}
|
|
} else {
|
|
std::cerr << "Layer: " << tensorInfo.name
|
|
<< " does not exist, skipping" << std::endl;
|
|
}
|
|
}
|
|
|
|
file.close();
|
|
}
|
|
|
|
bool Model::validate() {
|
|
bool valid = true;
|
|
int size = inputLayer->getInputSize();
|
|
|
|
for (const auto& layer : layers) {
|
|
if (layer.second->getInputSize() != size) {
|
|
valid = false;
|
|
std::cerr << "Layer: " << layer.first
|
|
<< " has incorrect input size, expected " << size
|
|
<< " but got " << layer.second->getInputSize()
|
|
<< std::endl;
|
|
break;
|
|
}
|
|
|
|
size = layer.second->getOutputSize();
|
|
}
|
|
|
|
return valid;
|
|
}
|
|
|
|
void Model::printSummary() {
|
|
struct layer_info {
|
|
std::string name;
|
|
std::string inputSize;
|
|
std::string outputSize;
|
|
};
|
|
|
|
std::vector<layer_info> layerInfos;
|
|
|
|
int maxNameLength = 0;
|
|
int maxInputLength = 0;
|
|
int maxOutputLength = 0;
|
|
|
|
for (const auto& layer : layers) {
|
|
layer_info layerInfo = {
|
|
layer.first, std::to_string(layer.second->getInputSize()),
|
|
std::to_string(layer.second->getOutputSize())
|
|
};
|
|
layerInfos.push_back(layerInfo);
|
|
|
|
maxNameLength = std::max(maxNameLength, (int)layerInfo.name.size());
|
|
maxInputLength =
|
|
std::max(maxInputLength, (int)layerInfo.inputSize.size());
|
|
maxOutputLength =
|
|
std::max(maxOutputLength, (int)layerInfo.outputSize.size());
|
|
}
|
|
|
|
int rowLength = maxNameLength + maxInputLength + maxOutputLength + 6;
|
|
|
|
std::cout << "Model Summary:" << std::endl
|
|
<< std::string(rowLength, '-') << std::endl;
|
|
|
|
for (const auto& layerInfo : layerInfos) {
|
|
std::cout << std::left
|
|
<< std::setw(maxNameLength) << layerInfo.name
|
|
<< " | " << std::right
|
|
<< std::setw(maxInputLength) << layerInfo.inputSize
|
|
<< " | "
|
|
<< std::setw(maxOutputLength) << layerInfo.outputSize
|
|
<< std::endl;
|
|
}
|
|
} |