Files
CUDANet/examples/alexnet/alexnet.py

39 lines
1.2 KiB
Python

import sys
import torch
import torchvision
from PIL import Image
from torchvision import transforms
sys.path.append('../../tools') # Ugly hack
from utils import export_model_weights, print_model_parameters
def predict(model, image_path):
input_image = Image.open(image_path)
preprocess = transforms.Compose([
transforms.Resize(256),
transforms.CenterCrop(227),
transforms.ToTensor(),
transforms.Normalize(mean=[0.485, 0.456, 0.406], std=[0.229, 0.224, 0.225]),
])
input_tensor = preprocess(input_image)
input_batch = input_tensor.unsqueeze(0) # create a mini-batch as expected by the model
# move the input and model to GPU for speed if available
if torch.cuda.is_available():
input_batch = input_batch.to('cuda')
model.to('cuda')
with torch.no_grad():
output = model(input_batch)
print(torch.argmax(output))
if __name__ == "__main__":
alexnet = torchvision.models.alexnet(weights=torchvision.models.AlexNet_Weights.DEFAULT)
print_model_parameters(alexnet) # print layer names and number of parameters
export_model_weights(alexnet, 'alexnet_weights.bin')
# predict(alexnet, 'cat.jpg')