mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
69 lines
2.1 KiB
Plaintext
69 lines
2.1 KiB
Plaintext
#include <iostream>
|
|
|
|
#include "backend.hpp"
|
|
#include "backend/cuda.cuh"
|
|
#include "utils/cuda_helper.cuh"
|
|
#include "kernels/matmul.cuh"
|
|
|
|
using namespace CUDANet::Backend;
|
|
|
|
void CUDA::print(const CUDANet::Tensor &input) {
|
|
auto length = input.numel();
|
|
std::vector<float> h_vec(input.numel());
|
|
|
|
CUDA_CHECK(cudaMemcpy(
|
|
h_vec.data(), input.data<float>(), sizeof(float) * length, cudaMemcpyDeviceToHost
|
|
));
|
|
|
|
for (int i = 0; i < length; ++i) {
|
|
std::cout << h_vec[i] << ", ";
|
|
}
|
|
|
|
std::cout << std::endl;
|
|
}
|
|
|
|
void CUDA::zero(CUDANet::Tensor &input) {
|
|
CUDA_CHECK(cudaMemset(input.data<float>(), 0, sizeof(float) * input.numel()));
|
|
}
|
|
|
|
void CUDA::copy_to_device(CUDANet::Tensor &tensor, void *data, size_t size) {
|
|
CUDA_CHECK(cudaMemcpy(tensor.data<float>(), data, size, cudaMemcpyHostToDevice));
|
|
}
|
|
|
|
void CUDA::sum(const CUDANet::Tensor &input, CUDANet::Tensor &sum) {
|
|
auto length = input.numel();
|
|
const int gridSize = ( + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
|
|
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
|
|
input.data<float>(), sum.data<float>(), length
|
|
);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
int remaining = gridSize;
|
|
while (remaining > 1) {
|
|
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(sum.data<float>(), sum.data<float>(), remaining);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
remaining = blocks_needed;
|
|
}
|
|
}
|
|
|
|
void CUDA::max(const CUDANet::Tensor &input, CUDANet::Tensor &max) {
|
|
auto length = input.numel();
|
|
const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
|
|
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(input.data<float>(), max.data<float>(), length);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
int remaining = grid_size;
|
|
|
|
while (remaining > 1) {
|
|
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
|
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(max.data<float>(), max.data<float>(), remaining);
|
|
CUDA_CHECK(cudaGetLastError());
|
|
|
|
remaining = blocks_needed;
|
|
}
|
|
}
|