mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
154 lines
3.0 KiB
Plaintext
154 lines
3.0 KiB
Plaintext
#ifndef CUDANET_BATCH_NORM_H
|
|
#define CUDANET_BATCH_NORM_H
|
|
|
|
#include <vector>
|
|
|
|
#include "activation.cuh"
|
|
#include "layer.cuh"
|
|
|
|
namespace CUDANet::Layers {
|
|
|
|
class BatchNorm2d : public WeightedLayer, public TwoDLayer {
|
|
public:
|
|
BatchNorm2d(shape2d inputSize, int inputChannels, float epsilon, ActivationType activationType);
|
|
|
|
~BatchNorm2d();
|
|
|
|
/**
|
|
* @brief Compute the forward pass of the batchnorm layer
|
|
*
|
|
* @param d_input Device pointer to the input
|
|
* @return float* Device pointer to the output
|
|
*/
|
|
float* forward(const float* d_input);
|
|
|
|
/**
|
|
* @brief Set the weights of the batchnorm layer
|
|
*
|
|
* @param weights_input Pointer to the weights
|
|
*/
|
|
void setWeights(const float* weights_input);
|
|
|
|
/**
|
|
* @brief Get the weights of the batchnorm layer
|
|
*
|
|
* @return std::vector<float>
|
|
*/
|
|
std::vector<float> getWeights();
|
|
|
|
/**
|
|
* @brief Set the biases of the batchnorm layer
|
|
*
|
|
* @param biases_input Pointer to the biases
|
|
*/
|
|
void setBiases(const float* biases_input);
|
|
|
|
/**
|
|
* @brief Get the biases of the batchnorm layer
|
|
*
|
|
* @return std::vector<float>
|
|
*/
|
|
std::vector<float> getBiases();
|
|
|
|
/**
|
|
* @brief Set the Running Mean
|
|
*
|
|
* @param running_mean_input
|
|
*/
|
|
void setRunningMean(const float* running_mean_input);
|
|
|
|
/**
|
|
* @brief Get the Running Mean
|
|
*
|
|
*/
|
|
std::vector<float> getRunningMean();
|
|
|
|
/**
|
|
* @brief Set the Running Var
|
|
*
|
|
* @param running_mean_input
|
|
*/
|
|
void setRunningVar(const float* running_mean_input);
|
|
|
|
/**
|
|
* @brief Get the Running Var
|
|
*
|
|
*/
|
|
std::vector<float> getRunningVar();
|
|
|
|
/**
|
|
* @brief Get output size
|
|
*
|
|
* @return int output size
|
|
*/
|
|
int getOutputSize();
|
|
|
|
/**
|
|
* @brief Get input size
|
|
*
|
|
* @return int input size
|
|
*/
|
|
int getInputSize();
|
|
|
|
shape2d getOutputDims();
|
|
|
|
private:
|
|
|
|
shape2d inputSize;
|
|
int inputChannels;
|
|
|
|
int gridSize;
|
|
|
|
float* d_output;
|
|
|
|
float* d_running_mean;
|
|
float* d_running_var;
|
|
|
|
float* d_length;
|
|
float* d_epsilon;
|
|
|
|
float* d_weights;
|
|
float* d_biases;
|
|
|
|
std::vector<float> weights;
|
|
std::vector<float> biases;
|
|
|
|
std::vector<float> running_mean;
|
|
std::vector<float> running_var;
|
|
|
|
Activation* activation;
|
|
|
|
/**
|
|
* @brief Initialize weights of the batchnorm layer with zeros
|
|
*
|
|
*/
|
|
void initializeWeights();
|
|
|
|
/**
|
|
* @brief Initialize biases of the batchnorm layer with zeros
|
|
*
|
|
*/
|
|
void initializeBiases();
|
|
|
|
/**
|
|
* @brief Initialize mean of the batchnorm layer with zeros
|
|
*
|
|
*/
|
|
void initializeRunningMean();
|
|
|
|
/**
|
|
* @brief Initialize sqrt of variance of the batchnorm layer with ones
|
|
*
|
|
*/
|
|
void initializeRunningVar();
|
|
|
|
/**
|
|
* @brief Copy weights and biases to the device
|
|
*
|
|
*/
|
|
void toCuda();
|
|
};
|
|
|
|
} // namespace CUDANet::Layers
|
|
|
|
#endif // CUDANET_BATCH_NORM_H |