Files
CUDANet/test/cuda/layers/test_avg_pooling.cu
2024-09-09 21:36:13 +02:00

282 lines
8.1 KiB
Plaintext

#include <cuda_runtime.h>
#include <gtest/gtest.h>
#include <vector>
#include "avg_pooling.hpp"
class AvgPoolingLayerTest : public ::testing::Test {
protected:
shape2d inputSize;
int nChannels;
shape2d poolingSize;
shape2d stride;
shape2d padding;
std::vector<float> input;
std::vector<float> expected;
float *d_input;
float *d_output;
CUDANet::Layers::AvgPooling2d *avgPoolingLayer;
virtual void SetUp() override {
d_input = nullptr;
d_output = nullptr;
avgPoolingLayer = nullptr;
}
virtual void TearDown() override {
if (d_input) {
cudaFree(d_input);
}
}
void runTest() {
cudaError_t cudaStatus;
avgPoolingLayer = new CUDANet::Layers::AvgPooling2d(
inputSize, nChannels, poolingSize, stride, padding,
CUDANet::Layers::ActivationType::NONE
);
cudaStatus = cudaMalloc(
(void **)&d_input,
sizeof(float) * inputSize.first * inputSize.second * nChannels
);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(
d_input, input.data(),
sizeof(float) * inputSize.first * inputSize.second * nChannels,
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
d_output = avgPoolingLayer->forward(d_input);
int outputSize = avgPoolingLayer->getOutputSize();
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < output.size(); ++i) {
EXPECT_NEAR(expected[i], output[i], 1e-4);
}
delete avgPoolingLayer;
}
};
TEST_F(AvgPoolingLayerTest, AvgPoolForwardTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 2};
stride = {2, 2};
padding = {0, 0};
input = {
// clang-format off
// Channel 0
0.573f, 0.619f, 0.732f, 0.055f,
0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f,
0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f,
0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f,
0.532f, 0.819f, 0.732f, 0.850f
// clang-format on
};
expected = {0.43775f, 0.49475f, 0.48975f, 0.339f,
0.45675f, 0.303f, 0.56975f, 0.57025f};
runTest();
}
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareInputTest) {
inputSize = {4, 6}; // Non-square input
nChannels = 2;
poolingSize = {2, 2};
stride = {2, 2};
padding = {0, 0};
input = {// Channel 0
0.573f, 0.619f, 0.732f, 0.055f, 0.123f, 0.234f, 0.243f, 0.316f,
0.573f, 0.619f, 0.456f, 0.789f, 0.712f, 0.055f, 0.243f, 0.316f,
0.654f, 0.987f, 0.573f, 0.619f, 0.742f, 0.055f, 0.321f, 0.654f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f, 0.321f, 0.654f, 0.073f, 0.362f,
0.973f, 0.059f, 0.654f, 0.987f, 0.473f, 0.455f, 0.283f, 0.416f,
0.789f, 0.123f, 0.532f, 0.819f, 0.732f, 0.850f, 0.987f, 0.321f
};
expected = {0.43775f, 0.49475f, 0.4005f, 0.48975f, 0.339f, 0.654f,
0.45675f, 0.303f, 0.654f, 0.56975f, 0.57025f, 0.555f};
runTest();
}
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquarePoolingTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 3}; // Non-square pooling
stride = {2, 2};
padding = {0, 0};
input = {// Channel 0
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
};
expected = {0.50933f, 0.49067f, 0.4845f, 0.549f};
runTest();
}
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquareStrideTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 2};
stride = {1, 2}; // Non-square stride
padding = {0, 0};
input = {// Channel 0
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
};
expected = {0.43775f, 0.49475f, 0.3315f, 0.43775f, 0.48975f, 0.339f,
0.45675f, 0.303f, 0.34075f, 0.43275f, 0.56975f, 0.57025f};
runTest();
}
TEST_F(AvgPoolingLayerTest, AvgPoolForwardNonSquarePaddingTest) {
inputSize = {4, 4};
nChannels = 2;
poolingSize = {2, 2};
stride = {2, 2};
padding = {1, 0}; // Non-square padding
input = {// Channel 0
0.573f, 0.619f, 0.732f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f, 0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f, 0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f, 0.532f, 0.819f, 0.732f, 0.850f
};
expected = {0.298f, 0.19675f, 0.3315f, 0.43775f, 0.298f, 0.19925f,
0.348f, 0.045f, 0.34075f, 0.43275f, 0.33775f, 0.3955f};
runTest();
}
class AdaptiveAvgPoolingLayerTest : public ::testing::Test {
protected:
shape2d inputSize;
shape2d outputSize;
int nChannels;
std::vector<float> input;
std::vector<float> expected;
float* d_input;
float* d_output;
CUDANet::Layers::AdaptiveAvgPooling2d* adaptiveAvgPoolingLayer;
virtual void SetUp() override {
d_input = nullptr;
d_output = nullptr;
adaptiveAvgPoolingLayer = nullptr;
}
virtual void TearDown() override {
cudaFree(d_input);
}
void runTest() {
cudaError_t cudaStatus;
adaptiveAvgPoolingLayer = new CUDANet::Layers::AdaptiveAvgPooling2d(
inputSize, nChannels, outputSize, CUDANet::Layers::ActivationType::NONE
);
cudaStatus = cudaMalloc(
(void**)&d_input,
sizeof(float) * inputSize.first * inputSize.second * nChannels
);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(
d_input, input.data(),
sizeof(float) * inputSize.first * inputSize.second * nChannels,
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
d_output = adaptiveAvgPoolingLayer->forward(d_input);
int outputSize = adaptiveAvgPoolingLayer->getOutputSize();
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * outputSize,
cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < output.size(); ++i) {
EXPECT_NEAR(expected[i], output[i], 1e-5);
}
delete adaptiveAvgPoolingLayer;
}
};
TEST_F(AdaptiveAvgPoolingLayerTest, AdaptiveAvgPoolForwardTest) {
inputSize = {4, 4};
outputSize = {2, 2};
nChannels = 2;
input = {
// clang-format off
// Channel 0
0.573f, 0.619f, 0.732f, 0.055f,
0.243f, 0.316f, 0.573f, 0.619f,
0.712f, 0.055f, 0.243f, 0.316f,
0.573f, 0.619f, 0.742f, 0.055f,
// Channel 1
0.473f, 0.919f, 0.107f, 0.073f,
0.073f, 0.362f, 0.973f, 0.059f,
0.473f, 0.455f, 0.283f, 0.416f,
0.532f, 0.819f, 0.732f, 0.850f
// clang-format on
};
expected = {
// clang-format off
// Channel 0
0.43775f, 0.49475f,
0.48975f, 0.339f,
// Channel 1
0.45675f, 0.303f,
0.56975f, 0.57025f
// clang-format on
};
runTest();
}