mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Remove cublas dependency
This commit is contained in:
@@ -1,4 +1,3 @@
|
||||
#include <cublas_v2.h>
|
||||
#include <cuda_runtime.h>
|
||||
|
||||
#include <cstdio>
|
||||
@@ -9,16 +8,15 @@
|
||||
#include "activations.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "dense.cuh"
|
||||
#include "matrix_math.cuh"
|
||||
|
||||
Layers::Dense::Dense(
|
||||
int inputSize,
|
||||
int outputSize,
|
||||
Activation activation,
|
||||
cublasHandle_t cublasHandle
|
||||
Activation activation
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
outputSize(outputSize),
|
||||
cublasHandle(cublasHandle),
|
||||
activation(activation) {
|
||||
// Allocate memory for weights and biases
|
||||
weights.resize(outputSize * inputSize);
|
||||
@@ -54,35 +52,30 @@ void Layers::Dense::initializeBiases() {
|
||||
}
|
||||
|
||||
void Layers::Dense::forward(const float* d_input, float* d_output) {
|
||||
const float alpha = 1.0f;
|
||||
const float beta = 0.0f;
|
||||
|
||||
CUBLAS_CHECK(cublasSgemv(
|
||||
cublasHandle, CUBLAS_OP_N, outputSize, inputSize, &alpha, d_weights,
|
||||
outputSize, d_input, 1, &beta, d_output, 1
|
||||
));
|
||||
CUBLAS_CHECK(
|
||||
cublasSaxpy(cublasHandle, outputSize, &alpha, d_biases, 1, d_output, 1)
|
||||
mat_vec_mul_kernel<<<1, outputSize>>>(
|
||||
d_weights, d_input, d_output, inputSize, outputSize
|
||||
);
|
||||
|
||||
int threadsPerBlock = 256;
|
||||
int blocksPerGrid = (outputSize + threadsPerBlock - 1) / threadsPerBlock;
|
||||
vec_vec_add_kernel<<<1, outputSize>>>(
|
||||
d_biases, d_output, d_output, outputSize
|
||||
);
|
||||
|
||||
switch (activation) {
|
||||
case SIGMOID:
|
||||
sigmoid_kernel<<<blocksPerGrid, threadsPerBlock>>>(
|
||||
sigmoid_kernel<<<1, outputSize>>>(
|
||||
d_output, d_output, outputSize
|
||||
);
|
||||
break;
|
||||
|
||||
case RELU:
|
||||
relu_kernel<<<blocksPerGrid, threadsPerBlock>>>(
|
||||
relu_kernel<<<1, outputSize>>>(
|
||||
d_output, d_output, outputSize
|
||||
);
|
||||
break;
|
||||
|
||||
default:
|
||||
linear_kernel<<<blocksPerGrid, threadsPerBlock>>>(
|
||||
linear_kernel<<<1, outputSize>>>(
|
||||
d_output, d_output, outputSize
|
||||
);
|
||||
break;
|
||||
@@ -92,12 +85,13 @@ void Layers::Dense::forward(const float* d_input, float* d_output) {
|
||||
}
|
||||
|
||||
void Layers::Dense::toCuda() {
|
||||
CUBLAS_CHECK(cublasSetMatrix(
|
||||
outputSize, inputSize, sizeof(float), weights.data(), outputSize,
|
||||
d_weights, outputSize
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(), sizeof(float) * inputSize * outputSize,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
CUBLAS_CHECK(cublasSetVector(
|
||||
biases.size(), sizeof(float), biases.data(), 1, d_biases, 1
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_biases, biases.data(), sizeof(float) * outputSize,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
}
|
||||
|
||||
@@ -111,10 +105,9 @@ void Layers::Dense::setWeights(
|
||||
exit(EXIT_FAILURE);
|
||||
}
|
||||
|
||||
for (int j = 0; j < inputSize; ++j) {
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
int idx = IDX2C(i, j, outputSize);
|
||||
weights[idx] = weights_input[i][j];
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
for (int j = 0; j < inputSize; ++j) {
|
||||
weights[i * inputSize + j] = weights_input[i][j];
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
Reference in New Issue
Block a user