mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Update alexnet preprocessing
This commit is contained in:
@@ -4,15 +4,30 @@
|
|||||||
#include <vector>
|
#include <vector>
|
||||||
|
|
||||||
std::vector<float>
|
std::vector<float>
|
||||||
readAndNormalizeImage(const std::string &imagePath, int width, int height) {
|
readAndNormalizeImage(const std::string &imagePath, int resizeSize, int cropSize) {
|
||||||
// Read the image using OpenCV
|
// Read the image using OpenCV
|
||||||
cv::Mat image = cv::imread(imagePath, cv::IMREAD_COLOR);
|
cv::Mat image = cv::imread(imagePath, cv::IMREAD_COLOR);
|
||||||
|
// Convert the image from BGR to RGB
|
||||||
|
cv::cvtColor(image, image, cv::COLOR_BGR2RGB);
|
||||||
|
|
||||||
// Resize and normalize the image
|
// Calculate the scaling factor
|
||||||
cv::resize(image, image, cv::Size(width, height));
|
double scale = std::max(static_cast<double>(resizeSize) / image.cols, static_cast<double>(resizeSize) / image.rows);
|
||||||
|
|
||||||
|
// Resize the image
|
||||||
|
cv::Mat resized;
|
||||||
|
cv::resize(image, resized, cv::Size(), scale, scale, cv::INTER_AREA);
|
||||||
|
|
||||||
|
// Calculate the cropping coordinates
|
||||||
|
int x = (resized.cols - cropSize) / 2;
|
||||||
|
int y = (resized.rows - cropSize) / 2;
|
||||||
|
|
||||||
|
// Perform center cropping
|
||||||
|
cv::Rect roi(x, y, cropSize, cropSize);
|
||||||
|
image = resized(roi);
|
||||||
|
|
||||||
|
// Normalize the image
|
||||||
image.convertTo(image, CV_32FC3, 1.0 / 255.0);
|
image.convertTo(image, CV_32FC3, 1.0 / 255.0);
|
||||||
|
|
||||||
// Normalize the image https://pytorch.org/hub/pytorch_vision_alexnet/
|
|
||||||
cv::Mat mean(image.size(), CV_32FC3, cv::Scalar(0.485, 0.456, 0.406));
|
cv::Mat mean(image.size(), CV_32FC3, cv::Scalar(0.485, 0.456, 0.406));
|
||||||
cv::Mat std(image.size(), CV_32FC3, cv::Scalar(0.229, 0.224, 0.225));
|
cv::Mat std(image.size(), CV_32FC3, cv::Scalar(0.229, 0.224, 0.225));
|
||||||
cv::subtract(image, mean, image);
|
cv::subtract(image, mean, image);
|
||||||
@@ -124,7 +139,7 @@ int main(int argc, const char *const argv[]) {
|
|||||||
|
|
||||||
// Read and normalize the image
|
// Read and normalize the image
|
||||||
std::vector<float> imageData =
|
std::vector<float> imageData =
|
||||||
readAndNormalizeImage(imagePath, inputSize.first, inputSize.second);
|
readAndNormalizeImage(imagePath, inputSize.first, inputSize.first);
|
||||||
|
|
||||||
// Print the size of the image data
|
// Print the size of the image data
|
||||||
const float *output = model->predict(imageData.data());
|
const float *output = model->predict(imageData.data());
|
||||||
|
|||||||
@@ -3,11 +3,17 @@ import sys
|
|||||||
import torchvision
|
import torchvision
|
||||||
|
|
||||||
sys.path.append('../../tools') # Ugly hack
|
sys.path.append('../../tools') # Ugly hack
|
||||||
from utils import export_model_weights, print_model_parameters
|
from utils import export_model_weights, print_model_parameters, predict
|
||||||
|
|
||||||
if __name__ == "__main__":
|
if __name__ == "__main__":
|
||||||
alexnet = torchvision.models.alexnet(weights=torchvision.models.AlexNet_Weights.DEFAULT)
|
|
||||||
print_model_parameters(alexnet) # print layer names and number of parameters
|
weights = torchvision.models.AlexNet_Weights.DEFAULT
|
||||||
export_model_weights(alexnet, 'alexnet_weights.bin')
|
alexnet = torchvision.models.alexnet(weights=weights)
|
||||||
# predict(alexnet, 'cat.jpg')
|
|
||||||
|
# print_model_parameters(alexnet) # print layer names and number of parameters
|
||||||
|
export_model_weights(alexnet, 'alexnet_weights.bin')
|
||||||
|
|
||||||
|
# class_labels = weights.meta["categories"]
|
||||||
|
# prediction = predict(alexnet, "margot.jpg")
|
||||||
|
# print(prediction, class_labels[prediction])
|
||||||
|
|
||||||
|
|||||||
Reference in New Issue
Block a user