mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
Migrate MaxPool2d layer to Tensors
This commit is contained in:
@@ -4,35 +4,34 @@
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
__global__ void Kernels::max_pooling(
|
||||
__global__ void Kernels::max_pool(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const shape2d inputSize,
|
||||
const shape2d outputSize,
|
||||
const int nChannels,
|
||||
const shape2d poolingSize,
|
||||
const shape2d stride,
|
||||
const shape2d padding
|
||||
const Shape input_shape,
|
||||
const Shape output_shape,
|
||||
const Shape pool_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape padding_shape
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int c = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= outputSize.first || j >= outputSize.second || c >= nChannels) {
|
||||
if (i >= output_shape[0] || j >= output_shape[1] || c >= output_shape[2]) {
|
||||
return;
|
||||
}
|
||||
|
||||
float max = 0.0f;
|
||||
|
||||
for (int k = 0; k < poolingSize.first; k++) {
|
||||
for (int l = 0; l < poolingSize.second; l++) {
|
||||
int inputRow = i * stride.first + k - padding.first;
|
||||
int inputCol = j * stride.second + l - padding.second;
|
||||
for (int k = 0; k < pool_shape[0]; k++) {
|
||||
for (int l = 0; l < pool_shape[1]; l++) {
|
||||
int inputRow = i * stride_shape[0] + k - padding_shape[0];
|
||||
int inputCol = j * stride_shape[1] + l - padding_shape[1];
|
||||
|
||||
if (inputRow >= 0 && inputRow < inputSize.first && inputCol >= 0 &&
|
||||
inputCol < inputSize.second) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
inputRow * inputSize.second + inputCol;
|
||||
if (inputRow >= 0 && inputRow < input_shape[0] && inputCol >= 0 &&
|
||||
inputCol < input_shape[1]) {
|
||||
int inputIndex = c * input_shape[0] * input_shape[1] +
|
||||
inputRow * input_shape[1] + inputCol;
|
||||
if (d_input[inputIndex] > max) {
|
||||
max = d_input[inputIndex];
|
||||
}
|
||||
@@ -41,45 +40,44 @@ __global__ void Kernels::max_pooling(
|
||||
}
|
||||
|
||||
d_output
|
||||
[c * outputSize.first * outputSize.second + i * outputSize.second + j] =
|
||||
[c * output_shape[0] * output_shape[1] + i * output_shape[1] + j] =
|
||||
max;
|
||||
}
|
||||
|
||||
__global__ void Kernels::avg_pooling(
|
||||
__global__ void Kernels::avg_pool(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const shape2d inputSize,
|
||||
const shape2d outputSize,
|
||||
const int nChannels,
|
||||
const shape2d poolingSize,
|
||||
const shape2d stride,
|
||||
const shape2d padding
|
||||
const Shape input_shape,
|
||||
const Shape output_shape,
|
||||
const Shape pool_shape,
|
||||
const Shape stride_shape,
|
||||
const Shape padding_shape
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int c = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= outputSize.first || j >= outputSize.second || c >= nChannels) {
|
||||
if (i >= output_shape[0] || j >= output_shape[1] || c >= output_shape[2]) {
|
||||
return;
|
||||
}
|
||||
|
||||
float sum = 0.0f;
|
||||
|
||||
for (int k = 0; k < poolingSize.first; k++) {
|
||||
for (int l = 0; l < poolingSize.second; l++) {
|
||||
int inputRow = i * stride.first + k - padding.first;
|
||||
int inputCol = j * stride.second + l - padding.second;
|
||||
for (int k = 0; k < pool_shape[0]; k++) {
|
||||
for (int l = 0; l < pool_shape[1]; l++) {
|
||||
int inputRow = i * stride_shape[0] + k - padding_shape[0];
|
||||
int inputCol = j * stride_shape[1] + l - padding_shape[1];
|
||||
|
||||
if (inputRow >= 0 && inputRow < inputSize.first && inputCol >= 0 &&
|
||||
inputCol < inputSize.second) {
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
inputRow * inputSize.second + inputCol;
|
||||
if (inputRow >= 0 && inputRow < input_shape[0] && inputCol >= 0 &&
|
||||
inputCol < input_shape[1]) {
|
||||
int inputIndex = c * input_shape[0] * input_shape[1] +
|
||||
inputRow * input_shape[1] + inputCol;
|
||||
sum += d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
d_output
|
||||
[c * outputSize.first * outputSize.second + i * outputSize.second + j] =
|
||||
sum / (poolingSize.first * poolingSize.second);
|
||||
[c * output_shape[0] * output_shape[1] + i * output_shape[1] + j] =
|
||||
sum / (pool_shape[0] * pool_shape[1]);
|
||||
}
|
||||
@@ -2,6 +2,7 @@
|
||||
#include "kernels/activation_functions.cuh"
|
||||
#include "kernels/convolution.cuh"
|
||||
#include "kernels/matmul.cuh"
|
||||
#include "kernels/pooling.cuh"
|
||||
#include "utils/cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet::Backend;
|
||||
@@ -108,5 +109,31 @@ CUDANet::Tensor& CUDA::conv2d(
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Tensor& CUDA::maxPool2d(
|
||||
const CUDANet::Tensor& input,
|
||||
CUDANet::Tensor& output,
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Shape output_shape
|
||||
) {
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(output_shape[0] + block.x - 1) / block.x,
|
||||
(output_shape[1] + block.y - 1) / block.y,
|
||||
(output_shape[2] + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::max_pool<<<grid, block>>>(
|
||||
input.data<float>(), output.data<float>(), input_shape, output_shape, pool_shape,
|
||||
stride_shape, padding_shape
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return output;
|
||||
}
|
||||
@@ -1,22 +0,0 @@
|
||||
#include "cuda_helper.cuh"
|
||||
#include "input.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void Input::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_output, sizeof(float) * inputSize));
|
||||
}
|
||||
|
||||
void Input::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
float* Input::forwardCUDA(const float* input) {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_output, input, sizeof(float) * inputSize, cudaMemcpyHostToDevice
|
||||
));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -1,38 +0,0 @@
|
||||
#include "cuda_helper.cuh"
|
||||
#include "max_pooling.hpp"
|
||||
#include "pooling.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void MaxPooling2d::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output,
|
||||
sizeof(float) * outputSize.first * outputSize.second * nChannels
|
||||
));
|
||||
}
|
||||
|
||||
void MaxPooling2d::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
}
|
||||
|
||||
|
||||
float* MaxPooling2d::forwardCUDA(const float* d_input) {
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(outputSize.first + block.x - 1) / block.x,
|
||||
(outputSize.second + block.y - 1) / block.y,
|
||||
(nChannels + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
Kernels::max_pooling<<<grid, block>>>(
|
||||
d_input, d_output, inputSize, outputSize, nChannels, poolingSize,
|
||||
stride, padding
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
activation->activate(d_output);
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
@@ -1,14 +0,0 @@
|
||||
#include "output.hpp"
|
||||
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
float* Output::forwardCUDA(const float* input) {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
h_output, input, sizeof(float) * inputSize, cudaMemcpyDeviceToHost
|
||||
));
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return h_output;
|
||||
}
|
||||
@@ -83,7 +83,7 @@ Conv2d::Conv2d(
|
||||
|
||||
Conv2d::~Conv2d() {}
|
||||
|
||||
CUDANet::Tensor& Conv2d::forward(CUDANet::Tensor& input) {
|
||||
CUDANet::Tensor& Conv2d::forward( CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->conv2d(
|
||||
weights,
|
||||
|
||||
@@ -1,37 +0,0 @@
|
||||
#include <stdexcept>
|
||||
|
||||
#include "input.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Input::Input(int inputSize) : inputSize(inputSize) {
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
}
|
||||
|
||||
Input::~Input() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
}
|
||||
|
||||
float* Input::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* Input::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
|
||||
int Input::get_output_size() {
|
||||
return inputSize;
|
||||
}
|
||||
|
||||
int Input::getInputSize() {
|
||||
return inputSize;
|
||||
}
|
||||
70
src/layers/max_pool.cpp
Normal file
70
src/layers/max_pool.cpp
Normal file
@@ -0,0 +1,70 @@
|
||||
#include "max_pool.hpp"
|
||||
|
||||
#include <stdexcept>
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
MaxPool2d::MaxPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pooling_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: in_shape(input_shape),
|
||||
pooling_shape(pooling_shape),
|
||||
stride_shape(stride_shape),
|
||||
padding_shape(padding_shape),
|
||||
backend(backend) {
|
||||
size_t out_h = (in_shape[0] + 2 * padding_shape[0] - pooling_shape[0]) /
|
||||
stride_shape[0] +
|
||||
1;
|
||||
size_t out_w = (in_shape[1] + 2 * padding_shape[1] - pooling_shape[1]) /
|
||||
stride_shape[1] +
|
||||
1;
|
||||
|
||||
out_shape.resize(3);
|
||||
out_shape[0] = out_h;
|
||||
out_shape[1] = out_w;
|
||||
out_shape[2] = in_shape[2];
|
||||
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
|
||||
CUDANet::DType::FLOAT32, backend
|
||||
);
|
||||
}
|
||||
|
||||
MaxPool2d::~MaxPool2d() {}
|
||||
|
||||
CUDANet::Tensor& MaxPool2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->maxPool2d(
|
||||
input, output, in_shape, pooling_shape, stride_shape, padding_shape,
|
||||
out_shape
|
||||
);
|
||||
return output;
|
||||
}
|
||||
|
||||
CUDANet::Shape MaxPool2d::input_shape() {
|
||||
return in_shape;
|
||||
}
|
||||
|
||||
CUDANet::Shape MaxPool2d::output_shape() {
|
||||
return out_shape;
|
||||
}
|
||||
|
||||
size_t MaxPool2d::input_size() {
|
||||
return sizeof(float) * in_shape[0] * in_shape[1] * in_shape[2];
|
||||
}
|
||||
|
||||
size_t MaxPool2d::output_size() {
|
||||
return sizeof(float) * out_shape[0] * out_shape[1] * out_shape[2];
|
||||
}
|
||||
|
||||
void MaxPool2d::set_weights(void* input) {}
|
||||
|
||||
CUDANet::Tensor& MaxPool2d::get_weights() {}
|
||||
|
||||
void MaxPool2d::set_biases(void* input) {}
|
||||
|
||||
CUDANet::Tensor& MaxPool2d::get_biases() {}
|
||||
@@ -1,67 +0,0 @@
|
||||
#include "max_pooling.hpp"
|
||||
#include <stdexcept>
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
MaxPooling2d::MaxPooling2d(
|
||||
shape2d inputSize,
|
||||
int nChannels,
|
||||
shape2d poolingSize,
|
||||
shape2d stride,
|
||||
shape2d padding,
|
||||
ActivationType activationType
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
nChannels(nChannels),
|
||||
poolingSize(poolingSize),
|
||||
stride(stride),
|
||||
padding(padding) {
|
||||
outputSize = {
|
||||
(inputSize.first + 2 * padding.first - poolingSize.first) /
|
||||
stride.first +
|
||||
1,
|
||||
(inputSize.second + 2 * padding.second - poolingSize.second) /
|
||||
stride.second +
|
||||
1
|
||||
};
|
||||
|
||||
activation = new Activation(
|
||||
activationType, outputSize.first * outputSize.second * nChannels
|
||||
);
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
#endif
|
||||
}
|
||||
|
||||
MaxPooling2d::~MaxPooling2d() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
delete activation;
|
||||
}
|
||||
|
||||
float* MaxPooling2d::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* MaxPooling2d::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
|
||||
|
||||
int MaxPooling2d::get_output_size() {
|
||||
return outputSize.first * outputSize.second * nChannels;
|
||||
}
|
||||
|
||||
int MaxPooling2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * nChannels;
|
||||
}
|
||||
|
||||
shape2d MaxPooling2d::getOutputDims() {
|
||||
return outputSize;
|
||||
}
|
||||
@@ -1,34 +0,0 @@
|
||||
#include "output.hpp"
|
||||
#include <stdexcept>
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
|
||||
Output::Output(int inputSize) : inputSize(inputSize) {
|
||||
h_output = (float*) malloc(sizeof(float) * inputSize);
|
||||
}
|
||||
|
||||
Output::~Output() {
|
||||
free(h_output);
|
||||
}
|
||||
|
||||
float* Output::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* Output::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
|
||||
int Output::get_output_size() {
|
||||
return inputSize;
|
||||
}
|
||||
|
||||
|
||||
int Output::getInputSize() {
|
||||
return inputSize;
|
||||
}
|
||||
Reference in New Issue
Block a user