mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
Migrate conv2d layer to Tensor
This commit is contained in:
@@ -1,5 +1,4 @@
|
||||
#ifndef CUDANET_CONV_LAYER_H
|
||||
#define CUDANET_CONV_LAYER_H
|
||||
#pragma once
|
||||
|
||||
#include <vector>
|
||||
|
||||
@@ -12,149 +11,52 @@ namespace CUDANet::Layers {
|
||||
* @brief 2D convolutional layer
|
||||
*
|
||||
*/
|
||||
class Conv2d : public WeightedLayer, public TwoDLayer {
|
||||
class Conv2d : public Layer {
|
||||
public:
|
||||
/**
|
||||
* @brief Construct a new Conv 2d layer
|
||||
*
|
||||
* @param inputSize Width and height of the input matrix
|
||||
* @param inputChannels Number of channels in the input matrix
|
||||
* @param kernelSize Width and height of the convolution kernel
|
||||
* @param stride Convolution stride
|
||||
* @param numFilters Number of output filters
|
||||
* @param paddingSize Padding size
|
||||
* @param activationType Activation function type ('RELU', 'SIGMOID',
|
||||
* 'SOFTMAX' or 'NONE')
|
||||
*/
|
||||
Conv2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
shape2d kernelSize,
|
||||
shape2d stride,
|
||||
int numFilters,
|
||||
shape2d paddingSize,
|
||||
ActivationType activationType
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape kernel_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Backend* backend
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Destroy the Conv 2d object
|
||||
*
|
||||
*/
|
||||
~Conv2d();
|
||||
~Conv2d() {};
|
||||
|
||||
/**
|
||||
* @brief Forward pass of the convolutional layer
|
||||
*
|
||||
* @param d_input Device pointer to the input matrix
|
||||
* @return Device pointer to the output matrix
|
||||
*/
|
||||
float* forward(const float* d_input);
|
||||
CUDANet::Tensor& forward(const CUDANet::Tensor& input) override;
|
||||
|
||||
/**
|
||||
* @brief Set the weights of the convolutional layer
|
||||
*
|
||||
* @param weights_input Pointer to the weights
|
||||
*/
|
||||
void setWeights(const float* weights_input);
|
||||
CUDANet::Shape input_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Get the weights of the convolutional layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getWeights();
|
||||
CUDANet::Shape output_shape() override;
|
||||
|
||||
/**
|
||||
* @brief Set the biases of the convolutional layer
|
||||
*
|
||||
* @param biases_input Pointer to the biases
|
||||
*/
|
||||
void setBiases(const float* biases_input);
|
||||
size_t input_size() override;
|
||||
|
||||
/**
|
||||
* @brief Get the biases of the convolutional layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getBiases();
|
||||
size_t output_size();
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
* @return int output size
|
||||
*/
|
||||
int getOutputSize();
|
||||
void set_weights(void* input) override;
|
||||
|
||||
/**
|
||||
* @brief Get input size
|
||||
*
|
||||
* @return int input size
|
||||
*/
|
||||
int getInputSize();
|
||||
CUDANet::Tensor& get_weights() override;
|
||||
|
||||
/**
|
||||
* @brief Get the padding size of the layer
|
||||
*
|
||||
* @return int
|
||||
*/
|
||||
shape2d getPaddingSize() {
|
||||
return paddingSize;
|
||||
}
|
||||
void set_biases(void* input) override;
|
||||
|
||||
shape2d getOutputDims();
|
||||
CUDANet::Tensor& get_biases() override;
|
||||
|
||||
CUDANet::Shape get_padding_shape();
|
||||
|
||||
private:
|
||||
// Inputs
|
||||
shape2d inputSize;
|
||||
int inputChannels;
|
||||
CUDANet::Backend* backend;
|
||||
|
||||
// Outputs
|
||||
shape2d outputSize;
|
||||
CUDANet::Shape in_shape;
|
||||
CUDANet::Shape out_shape;
|
||||
|
||||
// Kernel
|
||||
shape2d kernelSize;
|
||||
shape2d stride;
|
||||
shape2d paddingSize;
|
||||
int numFilters;
|
||||
CUDANet::Shape kernel_shape;
|
||||
CUDANet::Shape stride_shape;
|
||||
CUDANet::Shape padding_shape;
|
||||
|
||||
// Kernels
|
||||
std::vector<float> weights;
|
||||
std::vector<float> biases;
|
||||
CUDANet::Tensor weights;
|
||||
CUDANet::Tensor biases;
|
||||
|
||||
float* forwardCPU(const float* input);
|
||||
|
||||
// Cuda
|
||||
#ifdef USE_CUDA
|
||||
float* d_output;
|
||||
float* d_weights;
|
||||
float* d_biases;
|
||||
|
||||
float* forwardCUDA(const float* d_input);
|
||||
void initCUDA();
|
||||
void delCUDA();
|
||||
|
||||
/**
|
||||
* @brief Copy weights and biases to the device
|
||||
*
|
||||
*/
|
||||
void toCuda();
|
||||
#endif
|
||||
|
||||
Activation* activation;
|
||||
|
||||
/**
|
||||
* @brief Initialize weights of the convolutional layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeWeights();
|
||||
|
||||
/**
|
||||
* @brief Initialize biases of the convolutional layer with zeros
|
||||
*
|
||||
*/
|
||||
void initializeBiases();
|
||||
CUDANet::Tensor output;
|
||||
};
|
||||
|
||||
} // namespace CUDANet::Layers
|
||||
|
||||
#endif // CUDANET_CONV_LAYER_H
|
||||
|
||||
Reference in New Issue
Block a user