mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Rename dim2d to shape2d
This commit is contained in:
@@ -9,13 +9,13 @@ __global__ void Kernels::convolution(
|
||||
const float* __restrict__ d_kernel,
|
||||
const float* __restrict__ d_bias,
|
||||
float* __restrict__ d_output,
|
||||
const dim2d inputSize,
|
||||
const shape2d inputSize,
|
||||
const int nChannels,
|
||||
const dim2d paddingSize,
|
||||
const dim2d kernelSize,
|
||||
const dim2d stride,
|
||||
const shape2d paddingSize,
|
||||
const shape2d kernelSize,
|
||||
const shape2d stride,
|
||||
const int nFilters,
|
||||
const dim2d outputSize
|
||||
const shape2d outputSize
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
@@ -7,12 +7,12 @@ using namespace CUDANet;
|
||||
__global__ void Kernels::max_pooling(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const dim2d inputSize,
|
||||
const dim2d outputSize,
|
||||
const shape2d inputSize,
|
||||
const shape2d outputSize,
|
||||
const int nChannels,
|
||||
const dim2d poolingSize,
|
||||
const dim2d stride,
|
||||
const dim2d padding
|
||||
const shape2d poolingSize,
|
||||
const shape2d stride,
|
||||
const shape2d padding
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
@@ -48,12 +48,12 @@ __global__ void Kernels::max_pooling(
|
||||
__global__ void Kernels::avg_pooling(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_output,
|
||||
const dim2d inputSize,
|
||||
const dim2d outputSize,
|
||||
const shape2d inputSize,
|
||||
const shape2d outputSize,
|
||||
const int nChannels,
|
||||
const dim2d poolingSize,
|
||||
const dim2d stride,
|
||||
const dim2d padding
|
||||
const shape2d poolingSize,
|
||||
const shape2d stride,
|
||||
const shape2d padding
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
|
||||
@@ -5,11 +5,11 @@
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
AvgPooling2d::AvgPooling2d(
|
||||
dim2d inputSize,
|
||||
shape2d inputSize,
|
||||
int nChannels,
|
||||
dim2d poolingSize,
|
||||
dim2d stride,
|
||||
dim2d padding,
|
||||
shape2d poolingSize,
|
||||
shape2d stride,
|
||||
shape2d padding,
|
||||
ActivationType activationType
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
@@ -66,6 +66,6 @@ int AvgPooling2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * nChannels;
|
||||
}
|
||||
|
||||
dim2d AvgPooling2d::getOutputDims() {
|
||||
shape2d AvgPooling2d::getOutputDims() {
|
||||
return outputSize;
|
||||
}
|
||||
@@ -10,7 +10,7 @@
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
BatchNorm2d::BatchNorm2d(
|
||||
dim2d inputSize,
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
float epsilon,
|
||||
ActivationType activationType
|
||||
@@ -128,7 +128,7 @@ int BatchNorm2d::getOutputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
dim2d BatchNorm2d::getOutputDims() {
|
||||
shape2d BatchNorm2d::getOutputDims() {
|
||||
return inputSize;
|
||||
}
|
||||
|
||||
|
||||
@@ -12,12 +12,12 @@
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Conv2d::Conv2d(
|
||||
dim2d inputSize,
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
dim2d kernelSize,
|
||||
dim2d stride,
|
||||
shape2d kernelSize,
|
||||
shape2d stride,
|
||||
int numFilters,
|
||||
dim2d paddingSize,
|
||||
shape2d paddingSize,
|
||||
ActivationType activationType
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
@@ -139,6 +139,6 @@ int Conv2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
dim2d Conv2d::getOutputDims() {
|
||||
shape2d Conv2d::getOutputDims() {
|
||||
return outputSize;
|
||||
}
|
||||
@@ -5,11 +5,11 @@
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
MaxPooling2d::MaxPooling2d(
|
||||
dim2d inputSize,
|
||||
shape2d inputSize,
|
||||
int nChannels,
|
||||
dim2d poolingSize,
|
||||
dim2d stride,
|
||||
dim2d padding,
|
||||
shape2d poolingSize,
|
||||
shape2d stride,
|
||||
shape2d padding,
|
||||
ActivationType activationType
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
@@ -70,6 +70,6 @@ int MaxPooling2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * nChannels;
|
||||
}
|
||||
|
||||
dim2d MaxPooling2d::getOutputDims() {
|
||||
shape2d MaxPooling2d::getOutputDims() {
|
||||
return outputSize;
|
||||
}
|
||||
@@ -11,7 +11,7 @@
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
Model::Model(const dim2d inputSize, const int inputChannels, const int outputSize)
|
||||
Model::Model(const shape2d inputSize, const int inputChannels, const int outputSize)
|
||||
: inputSize(inputSize),
|
||||
inputChannels(inputChannels),
|
||||
outputSize(outputSize),
|
||||
|
||||
Reference in New Issue
Block a user