mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Add utils vector mean function
This commit is contained in:
@@ -38,6 +38,17 @@ void sum(const float *d_vec, float *d_sum, const unsigned int length);
|
|||||||
*/
|
*/
|
||||||
void max(const float *d_vec, float *d_max, const unsigned int length);
|
void max(const float *d_vec, float *d_max, const unsigned int length);
|
||||||
|
|
||||||
|
|
||||||
|
/**
|
||||||
|
* @brief Compute the mean of the vector
|
||||||
|
*
|
||||||
|
* @param d_vec Device pointer to the vector
|
||||||
|
* @param d_mean Device pointer to the mean
|
||||||
|
* @param d_length Device pointer to the length
|
||||||
|
* @param length Length of the vector
|
||||||
|
*/
|
||||||
|
void mean(const float *d_vec, float *d_mean, float *d_length, int length);
|
||||||
|
|
||||||
// /**
|
// /**
|
||||||
// * @brief Compute the variance of a vector
|
// * @brief Compute the variance of a vector
|
||||||
// *
|
// *
|
||||||
|
|||||||
@@ -61,14 +61,16 @@ void Utils::sum(const float* d_vec, float* d_sum, const unsigned int length) {
|
|||||||
}
|
}
|
||||||
}
|
}
|
||||||
|
|
||||||
// __device__ float Utils::mean(float* d_vec, const unsigned int length) {
|
void Utils::mean(const float* d_vec, float* d_mean, float *d_length, int length) {
|
||||||
// float sum = 0;
|
Utils::sum(d_vec, d_mean, length);
|
||||||
// for (int i = 0; i < length; ++i) {
|
|
||||||
// sum += d_vec[i];
|
|
||||||
// }
|
|
||||||
|
|
||||||
// void Utils::var(float* d_vec, float* d_mean, float* d_var, const unsigned int length) {
|
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||||
|
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
||||||
// // TODO:
|
d_mean,
|
||||||
|
d_mean,
|
||||||
|
d_length,
|
||||||
|
length
|
||||||
|
);
|
||||||
|
|
||||||
// }
|
CUDA_CHECK(cudaGetLastError());
|
||||||
|
}
|
||||||
39
test/utils/test_vector.cu
Normal file
39
test/utils/test_vector.cu
Normal file
@@ -0,0 +1,39 @@
|
|||||||
|
#include <gtest/gtest.h>
|
||||||
|
|
||||||
|
#include "vector.cuh"
|
||||||
|
|
||||||
|
TEST(VectorTest, TestVectorMean) {
|
||||||
|
|
||||||
|
cudaError_t cudaStatus;
|
||||||
|
float length = 10;
|
||||||
|
|
||||||
|
std::vector<float> input = {0.44371f, 0.20253f, 0.73232f, 0.40378f, 0.93348f, 0.72756f, 0.63388f, 0.5251f, 0.23973f, 0.52233f};
|
||||||
|
|
||||||
|
float* d_vec = nullptr;
|
||||||
|
cudaStatus = cudaMalloc((void **)&d_vec, sizeof(float) * length);
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
float* d_mean = nullptr;
|
||||||
|
cudaStatus = cudaMalloc((void **)&d_mean, sizeof(float) * length);
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
float* d_length = nullptr;
|
||||||
|
cudaStatus = cudaMalloc((void **)&d_length, sizeof(float));
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
cudaStatus = cudaMemcpy(d_vec, input.data(), sizeof(float) * length, cudaMemcpyHostToDevice);
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
cudaStatus = cudaMemcpy(d_length, &length, sizeof(float), cudaMemcpyHostToDevice);
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
CUDANet::Utils::mean(d_vec, d_mean, d_length, length);
|
||||||
|
|
||||||
|
std::vector<float> mean(length);
|
||||||
|
cudaStatus = cudaMemcpy(mean.data(), d_mean, sizeof(float) * length, cudaMemcpyDeviceToHost);
|
||||||
|
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||||
|
|
||||||
|
float expected_mean = 0.5364f;
|
||||||
|
EXPECT_NEAR(mean[0], expected_mean, 1e-4);
|
||||||
|
|
||||||
|
}
|
||||||
10
tools/vector_test.py
Normal file
10
tools/vector_test.py
Normal file
@@ -0,0 +1,10 @@
|
|||||||
|
import torch
|
||||||
|
|
||||||
|
def gen_vector_mean_test_result():
|
||||||
|
input = torch.tensor([0.44371, 0.20253, 0.73232, 0.40378, 0.93348, 0.72756, 0.63388, 0.5251, 0.23973, 0.52233])
|
||||||
|
output = torch.mean(input)
|
||||||
|
|
||||||
|
print(output)
|
||||||
|
|
||||||
|
if __name__ == "__main__":
|
||||||
|
gen_vector_mean_test_result()
|
||||||
Reference in New Issue
Block a user