Initialize conv2d layer

This commit is contained in:
2024-03-04 22:16:03 +01:00
parent f37320594a
commit cfc5c46d5e
5 changed files with 148 additions and 32 deletions

View File

@@ -13,6 +13,7 @@ set(LIBRARY_SOURCES
src/kernels/activations.cu
src/kernels/padding.cu
src/layers/dense.cu
src/layers/conv2d.cu
)
set(CMAKE_CUDA_ARCHITECTURES 75)

View File

@@ -1,31 +0,0 @@
#ifndef CONV_LAYER_H
#define CONV_LAYER_H
#include <cublas_v2.h>
namespace Layers {
class Conv {
public:
Conv(
int inputSize,
int outputSize,
int kernelSize,
cublasHandle_t cublasHandle
);
~Conv();
void forward(const float* input, float* output);
private:
int inputSize;
int outputSize;
int kernelSize;
cublasHandle_t cublasHandle;
float* d_weights;
float* d_biases;
};
} // namespace Layers
#endif // CONV_LAYER_H

60
include/layers/conv2d.cuh Normal file
View File

@@ -0,0 +1,60 @@
#ifndef CONV_LAYER_H
#define CONV_LAYER_H
#include <cublas_v2.h>
#include <string>
#include <vector>
#include "activations.cuh"
namespace Layers {
class Conv2d {
public:
Conv2d(
int inputSize,
int inputChannels,
int kernelSize,
int stride,
std::string padding,
int numFilters,
Activation activation,
cublasHandle_t cublasHandle
);
~Conv2d();
void forward(const float* d_input, float* d_output);
private:
// Inputs
int inputSize;
int inputChannels;
// Kernel
int kernelSize;
int stride;
int paddingSize;
int numFilters;
// Outputs
int outputSize;
// Kernels
std::vector<float> kernels;
// Cuda
cublasHandle_t cublasHandle;
float* d_kernels;
float* d_padded;
// Kernels
Activation activation;
void initializeKernels();
void toCuda();
};
} // namespace Layers
#endif // CONV_LAYER_H

View File

@@ -21,7 +21,7 @@ class Dense : public ILayer {
);
~Dense();
void forward(const float* input, float* output);
void forward(const float* d_input, float* d_output);
void setWeights(const std::vector<std::vector<float>>& weights);
void setBiases(const std::vector<float>& biases);

86
src/layers/conv2d.cu Normal file
View File

@@ -0,0 +1,86 @@
#include <cublas_v2.h>
#include <string>
#include "activations.cuh"
#include "conv2d.cuh"
#include "cuda_helper.cuh"
#include "padding.cuh"
Layers::Conv2d::Conv2d(
int inputSize,
int inputChannels,
int kernelSize,
int stride,
std::string padding,
int numFilters,
Activation activation,
cublasHandle_t cublasHandle
)
: inputSize(inputSize),
inputChannels(inputChannels),
kernelSize(kernelSize),
stride(stride),
numFilters(numFilters),
cublasHandle(cublasHandle),
activation(activation) {
// Allocate memory for kernels
if (padding == "SAME") {
outputSize = inputSize;
paddingSize = ((stride - 1) * inputSize - stride + kernelSize) / 2;
} else if (padding == "VALID") {
paddingSize = 0;
outputSize = (inputSize - kernelSize) / stride + 1;
}
kernels.resize(kernelSize * kernelSize);
initializeKernels();
d_kernels = nullptr;
CUDA_CHECK(
cudaMalloc((void**)&d_kernels, sizeof(float) * kernelSize * kernelSize)
);
toCuda();
d_padded = nullptr;
if (paddingSize > 0) {
CUDA_CHECK(
cudaMalloc((void**)&d_padded,
sizeof(float) * (inputSize + 2 * paddingSize) *
(inputSize + 2 * paddingSize) * inputChannels)
);
}
}
Layers::Conv2d::~Conv2d() {
cudaFree(d_kernels);
cudaFree(d_padded);
}
void Layers::Conv2d::initializeKernels() {
std::fill(kernels.begin(), kernels.end(), 0.0f);
}
void Layers::Conv2d::toCuda() {
CUDA_CHECK(cudaMemcpy(
d_kernels, kernels.data(), sizeof(float) * kernelSize * kernelSize,
cudaMemcpyHostToDevice
));
}
void Layers::Conv2d::forward(const float* d_input, float* d_output) {
// Padd input
int THREADS_PER_BLOCK = 256;
int BLOCKS = (outputSize * outputSize * inputChannels) / THREADS_PER_BLOCK + 1;
pad_matrix_kernel<<<BLOCKS, THREADS_PER_BLOCK>>>(
d_input, d_padded, inputSize, inputSize, inputChannels, paddingSize
);
// TODO: Implement 2D convolution
}