mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-22 14:24:22 +00:00
Implement InvalidShapeException
This commit is contained in:
@@ -18,35 +18,19 @@ AvgPool2d::AvgPool2d(
|
||||
padding_shape(padding_shape),
|
||||
backend(backend) {
|
||||
if (in_shape.size() != 3) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid input shape. Expected 3 dims, got {}", input_shape.size()
|
||||
)
|
||||
);
|
||||
throw InvalidShapeException("input", 3, in_shape.size());
|
||||
}
|
||||
|
||||
if (pool_shape.size() != 2) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid pool shape. Expected 2 dims, got {}", pool_shape.size()
|
||||
)
|
||||
);
|
||||
throw InvalidShapeException("pool", 2, pool_shape.size());
|
||||
}
|
||||
|
||||
if (stride_shape.size() != 2) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid stride shape. Expected 2 dims, got {}", stride_shape.size()
|
||||
)
|
||||
);
|
||||
throw InvalidShapeException("stride", 2, stride_shape.size());
|
||||
}
|
||||
|
||||
if (padding_shape.size() != 2) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid padding shape. Expected 2 dims, got {}", padding_shape.size()
|
||||
)
|
||||
);
|
||||
throw InvalidShapeException("padding", 2, padding_shape.size());
|
||||
}
|
||||
|
||||
out_shape = {
|
||||
|
||||
@@ -21,47 +21,31 @@ Conv2d::Conv2d(
|
||||
padding_shape(padding_shape),
|
||||
backend(backend) {
|
||||
if (in_shape.size() != 3) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid input shape. Expected 3 dims, got {}", in_shape.size()
|
||||
)
|
||||
);
|
||||
throw InvalidShapeException("input", 3, in_shape.size());
|
||||
}
|
||||
|
||||
if (kernel_shape.size() != 3) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid kernel shape. Expected 3 dims, got {}", kernel_shape.size()
|
||||
)
|
||||
);
|
||||
throw InvalidShapeException("kernel", 3, kernel_shape.size());
|
||||
}
|
||||
|
||||
if (stride_shape.size() != 2) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid stride shape. Expected 2 dims, got {}", stride_shape.size()
|
||||
)
|
||||
);
|
||||
throw InvalidShapeException("stride", 3, stride_shape.size());
|
||||
}
|
||||
|
||||
if (padding_shape.size() != 2) {
|
||||
throw std::runtime_error(
|
||||
std::format(
|
||||
"Invalid padding shape. Expected 2 dims, got {}", padding_shape.size()
|
||||
)
|
||||
);
|
||||
throw InvalidShapeException("padding", 3, padding_shape.size());
|
||||
}
|
||||
|
||||
size_t out_h = (in_shape[0] - kernel_shape[0] + 2 * padding_shape[0]) /
|
||||
stride_shape[0] +
|
||||
1;
|
||||
size_t out_w = (in_shape[1] - kernel_shape[1] + 2 * padding_shape[1]) /
|
||||
stride_shape[1] +
|
||||
1;
|
||||
out_shape.resize(3);
|
||||
out_shape[0] = out_h;
|
||||
out_shape[1] = out_w;
|
||||
out_shape[2] = kernel_shape[2];
|
||||
out_shape = {
|
||||
(in_shape[0] - kernel_shape[0] + 2 * padding_shape[0]) /
|
||||
stride_shape[0] +
|
||||
1,
|
||||
(in_shape[1] - kernel_shape[1] + 2 * padding_shape[1]) /
|
||||
stride_shape[1] +
|
||||
1,
|
||||
kernel_shape[2]
|
||||
};
|
||||
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
|
||||
CUDANet::DType::FLOAT32, backend
|
||||
@@ -69,7 +53,7 @@ Conv2d::Conv2d(
|
||||
|
||||
weights = CUDANet::Tensor(
|
||||
Shape{
|
||||
kernel_shape[0] * kernel_shape[1] * kernel_shape[2] * in_shape[2]
|
||||
kernel_shape[0], kernel_shape[1], kernel_shape[2], in_shape[2]
|
||||
},
|
||||
CUDANet::DType::FLOAT32, backend
|
||||
);
|
||||
@@ -83,18 +67,11 @@ Conv2d::Conv2d(
|
||||
|
||||
Conv2d::~Conv2d() {}
|
||||
|
||||
CUDANet::Tensor& Conv2d::forward( CUDANet::Tensor& input) {
|
||||
CUDANet::Tensor& Conv2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->conv2d(
|
||||
weights,
|
||||
biases,
|
||||
input,
|
||||
output,
|
||||
in_shape,
|
||||
padding_shape,
|
||||
kernel_shape,
|
||||
stride_shape,
|
||||
out_shape
|
||||
weights, biases, input, output, in_shape, padding_shape, kernel_shape,
|
||||
stride_shape, out_shape
|
||||
);
|
||||
return output;
|
||||
}
|
||||
|
||||
@@ -5,26 +5,22 @@
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Dense::Dense(CUDANet::Shape in, CUDANet::Shape out, CUDANet::Backend* backend)
|
||||
Dense::Dense(CUDANet::Shape in_shape, CUDANet::Shape out_shape, CUDANet::Backend* backend)
|
||||
: backend(backend),
|
||||
in_shape(in),
|
||||
out_shape(out) {
|
||||
in_shape(in_shape),
|
||||
out_shape(out_shape) {
|
||||
|
||||
if (in.size() != 1) {
|
||||
throw std::runtime_error(
|
||||
std::format("Invalid shape. Expected [1], got {}", in_shape)
|
||||
);
|
||||
if (in_shape.size() != 1) {
|
||||
throw InvalidShapeException("input", 1, in_shape.size());
|
||||
}
|
||||
|
||||
if (out.size() != 1) {
|
||||
throw std::runtime_error(
|
||||
std::format("Invalid shape. Expected [1], got {}", out_shape)
|
||||
);
|
||||
if (out_shape.size() != 1) {
|
||||
throw InvalidShapeException("output", 1, out_shape.size());
|
||||
}
|
||||
|
||||
weights = CUDANet::Tensor(Shape{in[0] * out[0]}, CUDANet::DType::FLOAT32, backend);
|
||||
biases = CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend);
|
||||
output = CUDANet::Tensor(Shape{out[0]}, CUDANet::DType::FLOAT32, backend);
|
||||
weights = CUDANet::Tensor(Shape{out_shape[0], in_shape[0]}, CUDANet::DType::FLOAT32, backend);
|
||||
biases = CUDANet::Tensor(Shape{out_shape[0]}, CUDANet::DType::FLOAT32, backend);
|
||||
output = CUDANet::Tensor(Shape{out_shape[0]}, CUDANet::DType::FLOAT32, backend);
|
||||
|
||||
weights.zero();
|
||||
biases.zero();
|
||||
|
||||
@@ -6,27 +6,39 @@ using namespace CUDANet::Layers;
|
||||
|
||||
MaxPool2d::MaxPool2d(
|
||||
CUDANet::Shape input_shape,
|
||||
CUDANet::Shape pooling_shape,
|
||||
CUDANet::Shape pool_shape,
|
||||
CUDANet::Shape stride_shape,
|
||||
CUDANet::Shape padding_shape,
|
||||
CUDANet::Backend* backend
|
||||
)
|
||||
: in_shape(input_shape),
|
||||
pooling_shape(pooling_shape),
|
||||
pool_shape(pool_shape),
|
||||
stride_shape(stride_shape),
|
||||
padding_shape(padding_shape),
|
||||
backend(backend) {
|
||||
size_t out_h = (in_shape[0] + 2 * padding_shape[0] - pooling_shape[0]) /
|
||||
stride_shape[0] +
|
||||
1;
|
||||
size_t out_w = (in_shape[1] + 2 * padding_shape[1] - pooling_shape[1]) /
|
||||
stride_shape[1] +
|
||||
1;
|
||||
if (in_shape.size() != 3) {
|
||||
throw InvalidShapeException("input", 3, in_shape.size());
|
||||
}
|
||||
|
||||
out_shape.resize(3);
|
||||
out_shape[0] = out_h;
|
||||
out_shape[1] = out_w;
|
||||
out_shape[2] = in_shape[2];
|
||||
if (pool_shape.size() != 2) {
|
||||
throw InvalidShapeException("pool", 2, pool_shape.size());
|
||||
}
|
||||
|
||||
if (stride_shape.size() != 2) {
|
||||
throw InvalidShapeException("stride", 2, stride_shape.size());
|
||||
}
|
||||
|
||||
if (padding_shape.size() != 2) {
|
||||
throw InvalidShapeException("padding", 2, padding_shape.size());
|
||||
}
|
||||
|
||||
out_shape = {
|
||||
(in_shape[0] + 2 * padding_shape[0] - pool_shape[0]) / stride_shape[0] +
|
||||
1,
|
||||
(in_shape[1] + 2 * padding_shape[1] - pool_shape[1]) / stride_shape[1] +
|
||||
1,
|
||||
in_shape[2]
|
||||
};
|
||||
|
||||
output = CUDANet::Tensor(
|
||||
Shape{out_shape[0] * out_shape[1] * out_shape[3]},
|
||||
@@ -39,7 +51,7 @@ MaxPool2d::~MaxPool2d() {}
|
||||
CUDANet::Tensor& MaxPool2d::forward(CUDANet::Tensor& input) {
|
||||
output.zero();
|
||||
backend->maxPool2d(
|
||||
input, output, in_shape, pooling_shape, stride_shape, padding_shape,
|
||||
input, output, in_shape, pool_shape, stride_shape, padding_shape,
|
||||
out_shape
|
||||
);
|
||||
return output;
|
||||
|
||||
Reference in New Issue
Block a user