Use 3d memory layout for pooling

This commit is contained in:
2024-03-20 19:17:30 +01:00
parent 5860faf85e
commit c062e89972
3 changed files with 49 additions and 43 deletions

View File

@@ -1,6 +1,5 @@
#include "pooling.cuh"
#include "cuda_helper.cuh"
#include "pooling.cuh"
using namespace CUDANet;
@@ -12,24 +11,20 @@ __global__ void Kernels::max_pooling(
const int poolingSize,
const int stride
) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= inputSize * inputSize * nChannels) {
int j = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.y * blockIdx.y + threadIdx.y;
int c = blockDim.z * blockIdx.z + threadIdx.z;
if (i >= inputSize || j >= inputSize || c >= nChannels) {
return;
}
// Get output index
int c = tid / (inputSize * inputSize);
int i = tid % (inputSize * inputSize) / inputSize;
int j = tid % inputSize;
float max = 0.0f;
for (int k = 0; k < poolingSize; k++) {
for (int l = 0; l < poolingSize; l++) {
int inputIndex = c * inputSize * inputSize +
(i * stride + k) * inputSize +
(j * stride + l);
(i * stride + k) * inputSize + (j * stride + l);
if (d_input[inputIndex] > max) {
max = d_input[inputIndex];
@@ -37,7 +32,7 @@ __global__ void Kernels::max_pooling(
}
}
d_output[tid] = max;
d_output[c * inputSize * inputSize + i * inputSize + j] = max;
}
__global__ void Kernels::avg_pooling(
@@ -48,28 +43,25 @@ __global__ void Kernels::avg_pooling(
const int poolingSize,
const int stride
) {
int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= inputSize * inputSize * nChannels) {
int j = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.y * blockIdx.y + threadIdx.y;
int c = blockDim.z * blockIdx.z + threadIdx.z;
if (i >= inputSize || j >= inputSize || c >= nChannels) {
return;
}
// Get output index
int c = tid / (inputSize * inputSize);
int i = tid % (inputSize * inputSize) / inputSize;
int j = tid % inputSize;
float sum = 0.0f;
for (int k = 0; k < poolingSize; k++) {
for (int l = 0; l < poolingSize; l++) {
int inputIndex = c * inputSize * inputSize +
(i * stride + k) * inputSize +
(j * stride + l);
(i * stride + k) * inputSize + (j * stride + l);
sum += d_input[inputIndex];
}
}
d_output[tid] = sum / (poolingSize * poolingSize);
d_output[c * inputSize * inputSize + i * inputSize + j] =
sum / (poolingSize * poolingSize);
}

View File

@@ -5,38 +5,44 @@
using namespace CUDANet::Layers;
AvgPooling2D::AvgPooling2D(
int inputSize,
int nChannels,
int poolingSize,
int stride,
ActivationType activationType
)
: inputSize(inputSize), nChannels(nChannels), poolingSize(poolingSize), stride(stride) {
int inputSize,
int nChannels,
int poolingSize,
int stride,
ActivationType activationType
)
: inputSize(inputSize),
nChannels(nChannels),
poolingSize(poolingSize),
stride(stride) {
outputSize = (inputSize - poolingSize) / stride + 1;
outputSize = (inputSize - poolingSize) / stride + 1;
activation = Activation(
activationType, outputSize * outputSize * nChannels
);
activation =
Activation(activationType, outputSize * outputSize * nChannels);
d_output = nullptr;
CUDA_CHECK(cudaMalloc(
(void**)&d_output, sizeof(float) * outputSize * outputSize * nChannels
));
gridSize = (outputSize * outputSize * nChannels + BLOCK_SIZE - 1) / BLOCK_SIZE;
gridSize =
(outputSize * outputSize * nChannels + BLOCK_SIZE - 1) / BLOCK_SIZE;
}
AvgPooling2D::~AvgPooling2D() {
cudaFree(d_output);
}
float* AvgPooling2D::forward(const float* d_input) {
Kernels::avg_pooling<<<gridSize, BLOCK_SIZE>>>(
dim3 block(8, 8, 8);
dim3 grid(
(outputSize + block.x - 1) / block.x,
(outputSize + block.y - 1) / block.y,
(nChannels + block.z - 1) / block.z
);
Kernels::avg_pooling<<<grid, block>>>(
d_input, d_output, inputSize, nChannels, poolingSize, stride
);

View File

@@ -37,7 +37,15 @@ MaxPooling2D::~MaxPooling2D() {
float* MaxPooling2D::forward(const float* d_input) {
Kernels::max_pooling<<<gridSize, BLOCK_SIZE>>>(
dim3 block(8,8,8);
dim3 grid(
(outputSize + block.x - 1) / block.x,
(outputSize + block.y - 1) / block.y,
(nChannels + block.z - 1) / block.z
);
Kernels::max_pooling<<<grid, block>>>(
d_input, d_output, inputSize, nChannels, poolingSize, stride
);