mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Load running mean and var from weight file
This commit is contained in:
@@ -57,6 +57,12 @@ class BatchNorm2d : public WeightedLayer, public TwoDLayer {
|
||||
*/
|
||||
void setRunningMean(const float* running_mean_input);
|
||||
|
||||
/**
|
||||
* @brief Get the Running Mean
|
||||
*
|
||||
*/
|
||||
std::vector<float> getRunningMean();
|
||||
|
||||
/**
|
||||
* @brief Set the Running Var
|
||||
*
|
||||
@@ -64,6 +70,12 @@ class BatchNorm2d : public WeightedLayer, public TwoDLayer {
|
||||
*/
|
||||
void setRunningVar(const float* running_mean_input);
|
||||
|
||||
/**
|
||||
* @brief Get the Running Var
|
||||
*
|
||||
*/
|
||||
std::vector<float> getRunningVar();
|
||||
|
||||
/**
|
||||
* @brief Get output size
|
||||
*
|
||||
|
||||
@@ -15,6 +15,8 @@ namespace CUDANet {
|
||||
enum TensorType {
|
||||
WEIGHT,
|
||||
BIAS,
|
||||
RUNNING_MEAN,
|
||||
RUNNING_VAR
|
||||
};
|
||||
|
||||
struct TensorInfo {
|
||||
|
||||
@@ -121,11 +121,19 @@ void BatchNorm2d::setRunningMean(const float* running_mean_input) {
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getRunningMean() {
|
||||
return running_mean;
|
||||
}
|
||||
|
||||
void BatchNorm2d::setRunningVar(const float* running_var_input) {
|
||||
std::copy(running_var_input, running_var_input + inputChannels, running_var.begin());
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> BatchNorm2d::getRunningVar() {
|
||||
return running_var;
|
||||
}
|
||||
|
||||
void BatchNorm2d::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(), sizeof(float) * inputChannels,
|
||||
|
||||
@@ -9,6 +9,7 @@
|
||||
|
||||
#include "input.cuh"
|
||||
#include "layer.cuh"
|
||||
#include "batch_norm.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
@@ -91,6 +92,14 @@ void Model::loadWeights(const std::string& path) {
|
||||
return;
|
||||
}
|
||||
|
||||
auto getTensorType = [](const std::string& typeStr) {
|
||||
if (typeStr == "weight") return TensorType::WEIGHT;
|
||||
if (typeStr == "bias") return TensorType::BIAS;
|
||||
if (typeStr == "running_mean") return TensorType::RUNNING_MEAN;
|
||||
if (typeStr == "running_var") return TensorType::RUNNING_VAR;
|
||||
throw std::runtime_error("Unknown tensor type: " + typeStr);
|
||||
};
|
||||
|
||||
u_int64_t headerSize;
|
||||
file.read(reinterpret_cast<char*>(&headerSize), sizeof(headerSize));
|
||||
|
||||
@@ -115,9 +124,8 @@ void Model::loadWeights(const std::string& path) {
|
||||
size_t dotPos = nameStr.find_last_of('.');
|
||||
if (dotPos == std::string::npos) continue;
|
||||
std::string name = nameStr.substr(0, dotPos);
|
||||
TensorType type = nameStr.substr(dotPos + 1) == "weight"
|
||||
? TensorType::WEIGHT
|
||||
: TensorType::BIAS;
|
||||
|
||||
TensorType type = getTensorType(nameStr.substr(dotPos + 1));
|
||||
|
||||
line = line.substr(commaPos + 1);
|
||||
|
||||
@@ -173,6 +181,29 @@ void Model::loadWeights(const std::string& path) {
|
||||
|
||||
wLayer->setBiases(values.data());
|
||||
}
|
||||
|
||||
Layers::BatchNorm2d* bnLayer = dynamic_cast<Layers::BatchNorm2d*>(wLayer);
|
||||
if (bnLayer == nullptr) {
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensorInfo.type == TensorType::RUNNING_MEAN) {
|
||||
if (bnLayer->getRunningMean().size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensorInfo.name << " has incorrect number of running mean values, expected "
|
||||
<< bnLayer->getRunningMean().size() << " but got " << values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
bnLayer->setRunningMean(values.data());
|
||||
} else if (tensorInfo.type == TensorType::RUNNING_VAR) {
|
||||
if (bnLayer->getRunningVar().size() != values.size()) {
|
||||
std::cerr << "Layer: " << tensorInfo.name << " has incorrect number of running var values, expected "
|
||||
<< bnLayer->getRunningVar().size() << " but got " << values.size() << ", skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
bnLayer->setRunningVar(values.data());
|
||||
}
|
||||
|
||||
|
||||
} else {
|
||||
std::cerr << "Layer: " << tensorInfo.name
|
||||
<< " does not exist, skipping" << std::endl;
|
||||
|
||||
Reference in New Issue
Block a user