Refactor layers

This commit is contained in:
2024-03-19 21:35:05 +01:00
parent 8d14b74f66
commit b6c4b7d2ae
12 changed files with 87 additions and 67 deletions

View File

@@ -10,19 +10,19 @@
#include "dense.cuh"
#include "matmul.cuh"
using namespace CUDANet;
using namespace CUDANet::Layers;
Layers::Dense::Dense(
Dense::Dense(
int inputSize,
int outputSize,
Layers::ActivationType activationType
ActivationType activationType
)
: inputSize(inputSize), outputSize(outputSize) {
// Allocate memory for weights and biases
weights.resize(outputSize * inputSize);
biases.resize(outputSize);
activation = Layers::Activation(activationType, outputSize);
activation = Activation(activationType, outputSize);
initializeWeights();
initializeBiases();
@@ -47,22 +47,22 @@ Layers::Dense::Dense(
biasGridSize = (outputSize + BLOCK_SIZE - 1) / BLOCK_SIZE;
}
Layers::Dense::~Dense() {
Dense::~Dense() {
// Free GPU memory
cudaFree(d_output);
cudaFree(d_weights);
cudaFree(d_biases);
}
void Layers::Dense::initializeWeights() {
void Dense::initializeWeights() {
std::fill(weights.begin(), weights.end(), 0.0f);
}
void Layers::Dense::initializeBiases() {
void Dense::initializeBiases() {
std::fill(biases.begin(), biases.end(), 0.0f);
}
float* Layers::Dense::forward(const float* d_input) {
float* Dense::forward(const float* d_input) {
Kernels::mat_vec_mul<<<forwardGridSize, BLOCK_SIZE>>>(
d_weights, d_input, d_output, inputSize, outputSize
);
@@ -78,7 +78,7 @@ float* Layers::Dense::forward(const float* d_input) {
return d_output;
}
void Layers::Dense::toCuda() {
void Dense::toCuda() {
CUDA_CHECK(cudaMemcpy(
d_weights, weights.data(), sizeof(float) * inputSize * outputSize,
cudaMemcpyHostToDevice
@@ -89,12 +89,12 @@ void Layers::Dense::toCuda() {
));
}
void Layers::Dense::setWeights(const float* weights_input) {
void Dense::setWeights(const float* weights_input) {
std::copy(weights_input, weights_input + weights.size(), weights.begin());
toCuda();
}
void Layers::Dense::setBiases(const float* biases_input) {
void Dense::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}