Refactor layers

This commit is contained in:
2024-03-19 21:35:05 +01:00
parent 8d14b74f66
commit b6c4b7d2ae
12 changed files with 87 additions and 67 deletions

View File

@@ -3,9 +3,9 @@
#include "cuda_helper.cuh"
#include "activation_functions.cuh"
using namespace CUDANet;
using namespace CUDANet::Layers;
Layers::Activation::Activation(ActivationType activation, const unsigned int length)
Activation::Activation(ActivationType activation, const unsigned int length)
: activationType(activation), length(length) {
if (activationType == SOFTMAX) {
@@ -16,13 +16,13 @@ Layers::Activation::Activation(ActivationType activation, const unsigned int len
gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
}
Layers::Activation::~Activation() {
Activation::~Activation() {
if (activationType == SOFTMAX) {
cudaFree(d_softmax_sum);
}
}
void Layers::Activation::activate(float* __restrict__ d_input) {
void Activation::activate(float* __restrict__ d_input) {
switch (activationType) {
case SIGMOID:

View File

@@ -2,10 +2,10 @@
#include "matmul.cuh"
#include "cuda_helper.cuh"
using namespace CUDANet;
using namespace CUDANet::Layers;
Layers::Add::Add(int inputSize)
Add::Add(int inputSize)
: inputSize(inputSize) {
d_output = nullptr;
@@ -15,12 +15,12 @@ Layers::Add::Add(int inputSize)
}
Layers::Add::~Add() {
Add::~Add() {
cudaFree(d_output);
}
float* Layers::Add::forward(const float* d_inputA, const float* d_inputB) {
void Add::forward(const float* d_inputA, const float* d_inputB) {
Kernels::vec_vec_add<<<gridSize, BLOCK_SIZE>>>(
d_inputA, d_inputB, d_output, inputSize

View File

@@ -1,10 +1,10 @@
#include "concat.cuh"
#include "cuda_helper.cuh"
using namespace CUDANet;
using namespace CUDANet::Layers;
Layers::Concat::Concat(const unsigned int inputASize, const unsigned int inputBSize)
Concat::Concat(const unsigned int inputASize, const unsigned int inputBSize)
: inputASize(inputASize), inputBSize(inputBSize) {
d_output = nullptr;
@@ -14,12 +14,12 @@ Layers::Concat::Concat(const unsigned int inputASize, const unsigned int inputBS
}
Layers::Concat::~Concat() {
Concat::~Concat() {
cudaFree(d_output);
}
float* Layers::Concat::forward(const float* d_input_A, const float* d_input_B) {
float* Concat::forward(const float* d_input_A, const float* d_input_B) {
CUDA_CHECK(cudaMemcpy(
d_output, d_input_A, sizeof(float) * inputASize, cudaMemcpyDeviceToDevice
));

View File

@@ -7,16 +7,16 @@
#include "cuda_helper.cuh"
#include "matmul.cuh"
using namespace CUDANet;
using namespace CUDANet::Layers;
Layers::Conv2d::Conv2d(
Conv2d::Conv2d(
int inputSize,
int inputChannels,
int kernelSize,
int stride,
int numFilters,
Layers::Padding padding,
Layers::ActivationType activationType
Padding padding,
ActivationType activationType
)
: inputSize(inputSize),
inputChannels(inputChannels),
@@ -68,31 +68,31 @@ Layers::Conv2d::Conv2d(
toCuda();
}
Layers::Conv2d::~Conv2d() {
Conv2d::~Conv2d() {
cudaFree(d_output);
cudaFree(d_weights);
cudaFree(d_biases);
}
void Layers::Conv2d::initializeWeights() {
void Conv2d::initializeWeights() {
std::fill(weights.begin(), weights.end(), 0.0f);
}
void Layers::Conv2d::initializeBiases() {
void Conv2d::initializeBiases() {
std::fill(biases.begin(), biases.end(), 0.0f);
}
void Layers::Conv2d::setWeights(const float* weights_input) {
void Conv2d::setWeights(const float* weights_input) {
std::copy(weights_input, weights_input + weights.size(), weights.begin());
toCuda();
}
void Layers::Conv2d::setBiases(const float* biases_input) {
void Conv2d::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}
void Layers::Conv2d::toCuda() {
void Conv2d::toCuda() {
CUDA_CHECK(cudaMemcpy(
d_weights, weights.data(),
sizeof(float) * kernelSize * kernelSize * inputChannels * numFilters,
@@ -106,7 +106,7 @@ void Layers::Conv2d::toCuda() {
));
}
float* Layers::Conv2d::forward(const float* d_input) {
float* Conv2d::forward(const float* d_input) {
// Convolve
int THREADS_PER_BLOCK = outputSize * outputSize * numFilters;
Kernels::convolution<<<1, THREADS_PER_BLOCK>>>(

View File

@@ -10,19 +10,19 @@
#include "dense.cuh"
#include "matmul.cuh"
using namespace CUDANet;
using namespace CUDANet::Layers;
Layers::Dense::Dense(
Dense::Dense(
int inputSize,
int outputSize,
Layers::ActivationType activationType
ActivationType activationType
)
: inputSize(inputSize), outputSize(outputSize) {
// Allocate memory for weights and biases
weights.resize(outputSize * inputSize);
biases.resize(outputSize);
activation = Layers::Activation(activationType, outputSize);
activation = Activation(activationType, outputSize);
initializeWeights();
initializeBiases();
@@ -47,22 +47,22 @@ Layers::Dense::Dense(
biasGridSize = (outputSize + BLOCK_SIZE - 1) / BLOCK_SIZE;
}
Layers::Dense::~Dense() {
Dense::~Dense() {
// Free GPU memory
cudaFree(d_output);
cudaFree(d_weights);
cudaFree(d_biases);
}
void Layers::Dense::initializeWeights() {
void Dense::initializeWeights() {
std::fill(weights.begin(), weights.end(), 0.0f);
}
void Layers::Dense::initializeBiases() {
void Dense::initializeBiases() {
std::fill(biases.begin(), biases.end(), 0.0f);
}
float* Layers::Dense::forward(const float* d_input) {
float* Dense::forward(const float* d_input) {
Kernels::mat_vec_mul<<<forwardGridSize, BLOCK_SIZE>>>(
d_weights, d_input, d_output, inputSize, outputSize
);
@@ -78,7 +78,7 @@ float* Layers::Dense::forward(const float* d_input) {
return d_output;
}
void Layers::Dense::toCuda() {
void Dense::toCuda() {
CUDA_CHECK(cudaMemcpy(
d_weights, weights.data(), sizeof(float) * inputSize * outputSize,
cudaMemcpyHostToDevice
@@ -89,12 +89,12 @@ void Layers::Dense::toCuda() {
));
}
void Layers::Dense::setWeights(const float* weights_input) {
void Dense::setWeights(const float* weights_input) {
std::copy(weights_input, weights_input + weights.size(), weights.begin());
toCuda();
}
void Layers::Dense::setBiases(const float* biases_input) {
void Dense::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}

View File

@@ -1,14 +1,14 @@
#include "cuda_helper.cuh"
#include "input.cuh"
using namespace CUDANet;
using namespace CUDANet::Layers;
Layers::Input::Input(int inputSize) : inputSize(inputSize) {
Input::Input(int inputSize) : inputSize(inputSize) {
d_output = nullptr;
CUDA_CHECK(cudaMalloc((void**)&d_output, sizeof(float) * inputSize));
}
Layers::Input::~Input() {
Input::~Input() {
cudaFree(d_output);
}
@@ -19,7 +19,7 @@ Args
const float* input Host pointer to input data
float* d_output Device pointer to input data copied to device
*/
float* Layers::Input::forward(const float* input) {
float* Input::forward(const float* input) {
CUDA_CHECK(cudaMemcpy(
d_output, input, sizeof(float) * inputSize, cudaMemcpyHostToDevice
));