mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Improve softmax numerical stability
This commit is contained in:
@@ -35,6 +35,33 @@ __global__ void vec_vec_add(
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Max reduction kernel
|
||||
*
|
||||
* @param d_vector Device pointer to vector
|
||||
* @param d_output Device pointer to output vector
|
||||
*/
|
||||
__global__ void max_reduce(
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output
|
||||
);
|
||||
|
||||
/**
|
||||
* @brief Add scalar to each element of the vector
|
||||
*
|
||||
* @param d_vector
|
||||
* @param d_scalar
|
||||
* @param d_output
|
||||
* @param w
|
||||
* @return __global__
|
||||
*/
|
||||
__global__ void vec_scalar_sub(
|
||||
const float* __restrict__ d_vector,
|
||||
const float* __restrict__ d_scalar,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
);
|
||||
|
||||
} // namespace CUDANet::Kernels
|
||||
|
||||
#endif // CUDANET_MATMUL_H
|
||||
@@ -50,6 +50,7 @@ class Activation {
|
||||
unsigned int gridSize;
|
||||
|
||||
float* d_softmax_sum;
|
||||
float* d_max;
|
||||
|
||||
};
|
||||
|
||||
|
||||
@@ -49,3 +49,38 @@ __global__ void Kernels::vec_vec_add(
|
||||
}
|
||||
d_output[tid] = d_vector1[tid] + d_vector2[tid];
|
||||
}
|
||||
|
||||
__global__ void Kernels::max_reduce(
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output
|
||||
) {
|
||||
__shared__ float shared_max[BLOCK_SIZE];
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
shared_max[threadIdx.x] = d_vector[i];
|
||||
__syncthreads();
|
||||
|
||||
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
|
||||
if (threadIdx.x < s) {
|
||||
shared_max[threadIdx.x] = fmaxf(shared_max[threadIdx.x], shared_max[threadIdx.x + s]);
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
d_output[blockIdx.x] = shared_max[0];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_scalar_sub(
|
||||
const float* __restrict__ d_vector,
|
||||
const float* __restrict__ d_scalar,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= w) {
|
||||
return;
|
||||
}
|
||||
d_output[tid] = d_vector[tid] - d_scalar[0];
|
||||
}
|
||||
@@ -2,6 +2,10 @@
|
||||
|
||||
#include "cuda_helper.cuh"
|
||||
#include "activation_functions.cuh"
|
||||
#include "matmul.cuh"
|
||||
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
@@ -11,6 +15,9 @@ Activation::Activation(ActivationType activation, const unsigned int length)
|
||||
if (activationType == SOFTMAX) {
|
||||
d_softmax_sum = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_softmax_sum, sizeof(float) * length));
|
||||
|
||||
d_max = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_max, sizeof(float) * length));
|
||||
}
|
||||
|
||||
gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
@@ -37,6 +44,21 @@ void Activation::activate(float* __restrict__ d_input) {
|
||||
);
|
||||
break;
|
||||
case SOFTMAX:
|
||||
|
||||
// Find max value
|
||||
Kernels::max_reduce<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_max
|
||||
);
|
||||
Kernels::max_reduce<<<1, BLOCK_SIZE>>>(
|
||||
d_max, d_max
|
||||
);
|
||||
|
||||
// Subtract max value to improve numerical stability
|
||||
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_max, d_input, length
|
||||
);
|
||||
|
||||
// Compute softmax
|
||||
Kernels::softmax_exp<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_input, d_input, length
|
||||
);
|
||||
|
||||
@@ -3,6 +3,7 @@
|
||||
|
||||
#include <vector>
|
||||
|
||||
#include "cuda_helper.cuh"
|
||||
#include "matmul.cuh"
|
||||
|
||||
TEST(MatMulTest, MatVecMulTest) {
|
||||
@@ -61,3 +62,31 @@ TEST(MatMulTest, MatVecMulTest) {
|
||||
}
|
||||
}
|
||||
|
||||
TEST(MatMulTest, MaxReduceTest) {
|
||||
cudaError_t cudaStatus;
|
||||
|
||||
std::vector<float> input = {0.643f, 0.912f, 0.723f, 0.587f, 0.155f, 0.932f, 0.391f, 0.279f, 0.846f, 0.788f};
|
||||
|
||||
float* d_input;
|
||||
float* d_output;
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 10);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float));
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
cudaStatus = cudaMemcpy(d_input, input.data(), sizeof(float) * 10, cudaMemcpyHostToDevice);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
const int grid_size = (10 + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
CUDANet::Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(d_input, d_output);
|
||||
CUDANet::Kernels::max_reduce<<<1, BLOCK_SIZE>>>(d_output, d_output);
|
||||
|
||||
std::vector<float> output(10);
|
||||
cudaStatus = cudaMemcpy(output.data(), d_output, sizeof(float), cudaMemcpyDeviceToHost);
|
||||
EXPECT_EQ(cudaStatus, cudaSuccess);
|
||||
|
||||
EXPECT_EQ(output[0], 0.932f);
|
||||
}
|
||||
@@ -52,7 +52,7 @@ TEST(Model, TestModelPredict) {
|
||||
|
||||
// dense
|
||||
CUDANet::Layers::Dense dense(
|
||||
18, 6, CUDANet::Layers::ActivationType::NONE
|
||||
18, 6, CUDANet::Layers::ActivationType::SOFTMAX
|
||||
);
|
||||
// dense weights 18*6
|
||||
std::vector<float> denseWeights = {
|
||||
@@ -93,13 +93,14 @@ TEST(Model, TestModelPredict) {
|
||||
|
||||
// predict
|
||||
const float* output = model.predict(input.data());
|
||||
float sum = 0.0f;
|
||||
|
||||
// float sum = 0.0f;
|
||||
for (int i = 0; i < outputSize; ++i) {
|
||||
// sum += output[i];
|
||||
sum += output[i];
|
||||
std::cout << output[i] << " ";
|
||||
}
|
||||
// EXPECT_NEAR(sum, 1.0f, 1e-5f);
|
||||
|
||||
std::cout << std::endl;
|
||||
|
||||
EXPECT_NEAR(sum, 1.0f, 1e-5f);
|
||||
}
|
||||
Reference in New Issue
Block a user