Migrate concat layer

This commit is contained in:
2025-11-21 23:52:58 +01:00
parent fd4775faa4
commit aeb1739c46
9 changed files with 90 additions and 96 deletions

View File

@@ -211,4 +211,24 @@ CUDANet::Tensor& CUDA::batch_norm(
);
CUDA_CHECK(cudaGetLastError());
}
}
CUDANet::Tensor& CUDA::concat(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) {
CUDA_CHECK(cudaMemcpy(
output.data<float>(), input_a.data<float>(), input_a.size(),
cudaMemcpyDeviceToDevice
));
CUDA_CHECK(cudaMemcpy(
output.data<float>() + input_a.numel(), input_b.data<float>(), input_b.size(),
cudaMemcpyDeviceToDevice
));
CUDA_CHECK(cudaDeviceSynchronize());
return output;
}

View File

@@ -1,31 +0,0 @@
#include "concat.hpp"
#include "cuda_helper.cuh"
using namespace CUDANet::Layers;
void Concat::initCUDA() {
d_output = nullptr;
CUDA_CHECK(
cudaMalloc((void**)&d_output, sizeof(float) * (inputASize + inputBSize))
);
}
void Concat::delCUDA() {
cudaFree(d_output);
}
float* Concat::forwardCUDA(const float* d_input_A, const float* d_input_B) {
CUDA_CHECK(cudaMemcpy(
d_output, d_input_A, sizeof(float) * inputASize,
cudaMemcpyDeviceToDevice
));
CUDA_CHECK(cudaMemcpy(
d_output + inputASize, d_input_B, sizeof(float) * inputBSize,
cudaMemcpyDeviceToDevice
));
CUDA_CHECK(cudaDeviceSynchronize());
return d_output;
}

View File

@@ -1,34 +1,32 @@
#include <stdexcept>
#include "concat.hpp"
using namespace CUDANet::Layers;
Concat::Concat(const int inputASize, const int inputBSize)
: inputASize(inputASize), inputBSize(inputBSize) {
#ifdef USE_CUDA
initCUDA();
#endif
Concat::Concat(const CUDANet::Shape a_shape, const CUDANet::Shape b_shape, CUDANet::Backend *backend)
: a_shape(a_shape), b_shape(b_shape), backend(backend) {
if (a_shape[0] != b_shape[0] || a_shape[1] != b_shape[1]) {
throw InvalidShapeException(
"Concat requires matching batch and height dimensions", a_shape,
b_shape
);
}
out_shape = {a_shape[0], a_shape[1], a_shape[2] + b_shape[2]};
output = CUDANet::Tensor(out_shape, CUDANet::DType::FLOAT32, backend);
}
Concat::~Concat() {
#ifdef USE_CUDA
delCUDA();
#endif
Concat::~Concat() {}
CUDANet::Tensor& Concat::forward(CUDANet::Tensor& input_a, CUDANet::Tensor& input_b) {
output.zero();
backend->concat(
input_a,
input_b,
output
);
return output;
}
float* Concat::forwardCPU(const float* input_A, const float* input_B) {
throw std::logic_error("Not implemented");
}
float* Concat::forward(const float* input_A, const float* input_B) {
#ifdef USE_CUDA
return forwardCUDA(input_A, input_B);
#else
return forwardCPU(input_A, input_B);
#endif
}
int Concat::getOutputSize() {
return inputASize + inputBSize;
};
CUDANet::Shape Concat::output_shape() {
return out_shape;
}