Refactor conv2d test

This commit is contained in:
2024-05-23 20:31:54 +02:00
parent 10e73638b6
commit a300ab6dd5

View File

@@ -6,93 +6,62 @@
#include "conv2d.cuh"
class Conv2dTest : public ::testing::Test {
protected:
CUDANet::Layers::Conv2d commonTestSetup(
dim2d inputSize,
int inputChannels,
dim2d kernelSize,
dim2d stride,
int numFilters,
dim2d paddingSize,
CUDANet::Layers::ActivationType activationType,
std::vector<float>& input,
float* kernels,
float*& d_input
) {
// Create Conv2d layer
CUDANet::Layers::Conv2d conv2d(
protected:
dim2d inputSize;
int inputChannels;
dim2d kernelSize;
dim2d stride;
int numFilters;
dim2d paddingSize;
CUDANet::Layers::ActivationType activationType;
std::vector<float> input;
std::vector<float> kernels;
std::vector<float> expected;
float *d_input;
float *d_output;
CUDANet::Layers::Conv2d *conv2dLayer;
virtual void SetUp() override {
d_input = nullptr;
d_output = nullptr;
conv2dLayer = nullptr;
}
virtual void TearDown() override {
if (d_input) {
cudaFree(d_input);
}
delete conv2dLayer;
}
void runTest() {
cudaError_t cudaStatus;
conv2dLayer = new CUDANet::Layers::Conv2d(
inputSize, inputChannels, kernelSize, stride, numFilters,
paddingSize, activationType
);
conv2d.setWeights(kernels);
conv2dLayer->setWeights(kernels.data());
// Allocate device memory
cudaStatus = cudaMalloc(
(void**)&d_input,
sizeof(float) * inputSize.first * inputSize.second * inputChannels
);
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * input.size());
EXPECT_EQ(cudaStatus, cudaSuccess);
// // Copy input to device
cudaStatus = cudaMemcpy(
d_input, input.data(), sizeof(float) * input.size(),
cudaMemcpyHostToDevice
);
EXPECT_EQ(cudaStatus, cudaSuccess);
return conv2d;
}
d_output = conv2dLayer->forward(d_input);
void commonTestTeardown(float* d_input) {
// Free device memory
cudaFree(d_input);
}
cudaError_t cudaStatus;
};
TEST_F(Conv2dTest, SimpleTest) {
dim2d inputSize = {4, 4};
int inputChannels = 1;
dim2d kernelSize = {2, 2};
dim2d stride = {1, 1};
int numFilters = 1;
dim2d paddingSize = {0, 0};
CUDANet::Layers::ActivationType activationType =
CUDANet::Layers::ActivationType::NONE;
std::vector<float> input = {1.0f, 2.0f, 3.0f, 4.0f, 5.0f, 6.0f,
7.0f, 8.0f, 9.0f, 10.0f, 11.0f, 12.0f,
13.0f, 14.0f, 15.0f, 16.0f};
std::vector<float> kernels = {
1.0f,
2.0f,
3.0f,
4.0f,
};
float* d_input;
float* d_output;
CUDANet::Layers::Conv2d conv2d = commonTestSetup(
inputSize, inputChannels, kernelSize, stride, numFilters, paddingSize,
activationType, input, kernels.data(), d_input
);
int outputHeight = (inputSize.first - kernelSize.first) / stride.first + 1;
int outputWidth =
(inputSize.second - kernelSize.second) / stride.second + 1;
int outputHeight = (inputSize.first - kernelSize.first + 2 * paddingSize.first) / stride.first + 1;
int outputWidth = (inputSize.second - kernelSize.second + 2 * paddingSize.second) / stride.second + 1;
int outputSize = outputHeight * outputWidth * numFilters;
EXPECT_EQ(outputSize, conv2d.getOutputSize());
EXPECT_EQ(outputSize, conv2dLayer->getOutputSize());
d_output = conv2d.forward(d_input);
std::vector<float> expected = {44.0f, 54.0f, 64.0f, 84.0f, 94.0f,
104.0f, 124.0f, 134.0f, 144.0f};
std::vector<float> output(outputSize);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * output.size(),
cudaMemcpyDeviceToHost
@@ -100,31 +69,58 @@ TEST_F(Conv2dTest, SimpleTest) {
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < output.size(); ++i) {
EXPECT_FLOAT_EQ(expected[i], output[i]);
EXPECT_NEAR(expected[i], output[i], 1e-5f);
}
}
};
commonTestTeardown(d_input);
TEST_F(Conv2dTest, SimpleTest) {
inputSize = {4, 4};
inputChannels = 1;
kernelSize = {2, 2};
stride = {1, 1};
numFilters = 1;
paddingSize = {0, 0};
activationType = CUDANet::Layers::ActivationType::NONE;
input = {
// clang-format off
1.0f, 2.0f, 3.0f, 4.0f,
5.0f, 6.0f, 7.0f, 8.0f,
9.0f, 10.0f, 11.0f, 12.0f,
13.0f, 14.0f, 15.0f, 16.0f
// clang-format on
};
kernels = {
// clang-format off
1.0f,2.0f,
3.0f, 4.0f
// clang-format on
};
expected = {44.0f, 54.0f, 64.0f, 84.0f, 94.0f, 104.0f, 124.0f, 134.0f, 144.0f};
runTest();
}
TEST_F(Conv2dTest, PaddedTest) {
dim2d inputSize = {5, 5};
int inputChannels = 3;
dim2d kernelSize = {3, 3};
dim2d stride = {1, 1};
int numFilters = 2;
inputSize = {5, 5};
inputChannels = 3;
kernelSize = {3, 3};
stride = {1, 1};
numFilters = 2;
int paddingFirst =
CUDANET_SAME_PADDING(inputSize.first, kernelSize.first, stride.first);
int paddingSecond = CUDANET_SAME_PADDING(
inputSize.second, kernelSize.second, stride.second
);
dim2d paddingSize = {paddingFirst, paddingSecond};
paddingSize = {paddingFirst, paddingSecond};
CUDANet::Layers::ActivationType activationType =
activationType =
CUDANet::Layers::ActivationType::NONE;
// clang-format off
std::vector<float> input = {
input = {
// Channel 1
0.823f, 0.217f, 0.435f, 0.981f, 0.742f,
0.109f, 0.518f, 0.374f, 0.681f, 0.147f,
@@ -145,7 +141,7 @@ TEST_F(Conv2dTest, PaddedTest) {
0.345f, 0.123f, 0.789f, 0.123f, 0.456f
};
std::vector<float> kernels = {
kernels = {
// Filter 1, Channel 1
0.128f, 0.754f, 0.987f,
0.321f, 0.412f, 0.635f,
@@ -173,28 +169,8 @@ TEST_F(Conv2dTest, PaddedTest) {
};
// clang-format on
float* d_input;
float* d_output;
CUDANet::Layers::Conv2d conv2d = commonTestSetup(
inputSize, inputChannels, kernelSize, stride, numFilters, paddingSize,
activationType, input, kernels.data(), d_input
);
EXPECT_EQ(
inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize()
);
d_output = conv2d.forward(d_input);
std::vector<float> output(conv2d.getOutputSize());
cudaMemcpy(
output.data(), d_output, sizeof(float) * conv2d.getOutputSize(),
cudaMemcpyDeviceToHost
);
// Generated by tools/generate_conv2d_test.py
std::vector<float> expected = {
expected = {
// Channel 1
2.29426f, 3.89173f, 4.17634f, 3.25501f, 2.07618f, 5.41483f, 7.09971f,
6.39811f, 5.71432f, 3.10928f, 5.12973f, 6.29638f, 5.26962f, 5.21997f,
@@ -206,32 +182,29 @@ TEST_F(Conv2dTest, PaddedTest) {
2.78625f, 5.33763f, 5.80899f, 5.89785f, 5.51095f, 3.74287f, 2.64053f,
4.05895f, 3.96482f, 4.30177f, 1.94269f
};
for (int i = 0; i < output.size(); i++) {
EXPECT_NEAR(output[i], expected[i], 0.0001f);
}
commonTestTeardown(d_input);
runTest();
}
TEST_F(Conv2dTest, StridedPaddedConvolution) {
dim2d inputSize = {5, 5};
int inputChannels = 2;
dim2d kernelSize = {3, 3};
dim2d stride = {2, 2};
int numFilters = 2;
inputSize = {5, 5};
inputChannels = 2;
kernelSize = {3, 3};
stride = {2, 2};
numFilters = 2;
int paddingFirst =
CUDANET_SAME_PADDING(inputSize.first, kernelSize.second, stride.first);
int paddingSecond = CUDANET_SAME_PADDING(
inputSize.second, kernelSize.second, stride.second
);
dim2d paddingSize = {paddingFirst, paddingSecond};
paddingSize = {paddingFirst, paddingSecond};
CUDANet::Layers::ActivationType activationType =
activationType =
CUDANet::Layers::ActivationType::RELU;
// clang-format off
std::vector<float> input = {
input = {
// Channel 1
0.946f, 0.879f, 0.382f, 0.542f, 0.453f,
0.128f, 0.860f, 0.778f, 0.049f, 0.974f,
@@ -245,7 +218,7 @@ TEST_F(Conv2dTest, StridedPaddedConvolution) {
0.473f, 0.303f, 0.084f, 0.785f, 0.444f,
0.464f, 0.413f, 0.779f, 0.298f, 0.783f
};
std::vector<float> kernels = {
kernels = {
// Filter 1, Channel 1
0.744f, 0.745f, 0.641f,
0.164f, 0.157f, 0.127f,
@@ -265,28 +238,7 @@ TEST_F(Conv2dTest, StridedPaddedConvolution) {
};
// clang-format on
float* d_input;
float* d_output;
CUDANet::Layers::Conv2d conv2d = commonTestSetup(
inputSize, inputChannels, kernelSize, stride, numFilters, paddingSize,
activationType, input, kernels.data(), d_input
);
EXPECT_EQ(
inputSize.first * inputSize.second * numFilters, conv2d.getOutputSize()
);
d_output = conv2d.forward(d_input);
std::vector<float> output(conv2d.getOutputSize());
cudaMemcpy(
output.data(), d_output, sizeof(float) * conv2d.getOutputSize(),
cudaMemcpyDeviceToHost
);
// Generated by tools/generate_conv2d_test.py
std::vector<float> expected = {
expected = {
// Channel 1
0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 1.59803f, 2.84444f, 1.6201f, 0.0f,
0.0f, 2.38937f, 3.80762f, 3.39679f, 0.0f, 0.0f, 1.13102f, 2.33335f,
@@ -297,9 +249,5 @@ TEST_F(Conv2dTest, StridedPaddedConvolution) {
1.63218f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f, 0.0f
};
for (int i = 0; i < output.size(); i++) {
EXPECT_NEAR(output[i], expected[i], 0.0001f);
}
commonTestTeardown(d_input);
runTest();
}