Refactor CUDA kernels and tensor operations for type generality

This commit is contained in:
2025-11-26 20:47:55 +01:00
parent 13d3d38b68
commit 9ff214d759
14 changed files with 818 additions and 297 deletions

View File

@@ -18,19 +18,26 @@
do { \ do { \
cudaError_t result = call; \ cudaError_t result = call; \
if (result != cudaSuccess) { \ if (result != cudaSuccess) { \
fprintf(stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", \ fprintf( \
__FILE__, __LINE__, static_cast<unsigned int>(result), \ stderr, "CUDA error at %s:%d code=%d(%s) \"%s\" \n", __FILE__, \
cudaGetErrorString(result), #call); \ __LINE__, static_cast<unsigned int>(result), \
cudaGetErrorString(result), #call \
); \
exit(EXIT_FAILURE); \ exit(EXIT_FAILURE); \
} \ } \
} while (0) } while (0)
namespace CUDANet::Backends { namespace CUDANet::Backends {
template <DType dtype>
struct cuda_dtype_map;
template <>
struct cuda_dtype_map<DType::FLOAT32> {
using type = float;
};
class CUDA : public Backend { class CUDA : public Backend {
private:
int device_id;
std::set<DType> supported_dtypes;
public: public:
CUDA(const BackendConfig& config); CUDA(const BackendConfig& config);
@@ -45,7 +52,7 @@ class CUDA : public Backend {
void* allocate(size_t bytes) override; void* allocate(size_t bytes) override;
void deallocate(void* ptr) override; void deallocate(void* ptr) override;
// Tensor ops // Tensor ops dispatchers
void print(const CUDANet::Tensor& input) override; void print(const CUDANet::Tensor& input) override;
void zero(CUDANet::Tensor& input) override; void zero(CUDANet::Tensor& input) override;
void fill(CUDANet::Tensor& input, int value) override; void fill(CUDANet::Tensor& input, int value) override;
@@ -54,7 +61,7 @@ class CUDA : public Backend {
void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) override; void sum(const CUDANet::Tensor& input, CUDANet::Tensor& sum) override;
void max(const CUDANet::Tensor& input, CUDANet::Tensor& max) override; void max(const CUDANet::Tensor& input, CUDANet::Tensor& max) override;
// Layer ops // Layer ops dispatchers
void relu(CUDANet::Tensor& tensor) override; void relu(CUDANet::Tensor& tensor) override;
void sigmoid(CUDANet::Tensor& tensor) override; void sigmoid(CUDANet::Tensor& tensor) override;
void softmax( void softmax(
@@ -126,6 +133,111 @@ class CUDA : public Backend {
CUDANet::Tensor& input_b, CUDANet::Tensor& input_b,
CUDANet::Tensor& output CUDANet::Tensor& output
) override; ) override;
private:
int device_id;
std::set<DType> supported_dtypes;
// Tensor ops template impls
template <typename T>
void print_impl(const CUDANet::Tensor& input);
template <typename T>
void fill_impl(CUDANet::Tensor& input, int value);
template <typename T>
void copy_to_device_impl(CUDANet::Tensor& tensor, void* data, size_t size);
template <typename T>
void sum_impl(const CUDANet::Tensor& input, CUDANet::Tensor& sum);
template <typename T>
void max_impl(const CUDANet::Tensor& input, CUDANet::Tensor& max);
// Layer ops template impls
template <typename T>
void relu_impl(CUDANet::Tensor& tensor);
template <typename T>
void sigmoid_impl(CUDANet::Tensor& tensor);
template <typename T>
void softmax_impl(
CUDANet::Tensor& tensor,
CUDANet::Tensor& temp_max,
CUDANet::Tensor& temp_sum
);
template <typename T>
CUDANet::Tensor& dense_impl(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
);
template <typename T>
CUDANet::Tensor& conv2d_impl(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const CUDANet::Shape in_shape,
const CUDANet::Shape padding_shape,
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
);
template <typename T>
CUDANet::Tensor& max_pool2d_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
);
template <typename T>
CUDANet::Tensor& avg_pool2d_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
);
template <typename T>
CUDANet::Tensor& batch_norm_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
);
template <typename T>
CUDANet::Tensor& concat_impl(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
);
template <typename T>
CUDANet::Tensor& add_impl(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
);
}; };
} // namespace CUDANet::Backend } // namespace CUDANet::Backends

View File

@@ -4,29 +4,18 @@
namespace CUDANet::Kernels { namespace CUDANet::Kernels {
/**
* @brief Sigmoid activation function kernel template <typename T>
*
* @param src Pointer to the source array
* @param dst Pointer to the destination array
* @param len Length of the arrays
*/
__global__ void sigmoid( __global__ void sigmoid(
const float* __restrict__ src, const T* __restrict__ src,
float* __restrict__ dst, T* __restrict__ dst,
const unsigned int len const unsigned int len
); );
/** template <typename T>
* @brief Relu activation function kernel
*
* @param src Pointer to the source array
* @param dst Pointer to the destination array
* @param len Length of the arrays
*/
__global__ void relu( __global__ void relu(
const float* __restrict__ src, const T* __restrict__ src,
float* __restrict__ dst, T* __restrict__ dst,
const unsigned int len const unsigned int len
); );

View File

@@ -5,11 +5,12 @@
namespace CUDANet::Kernels { namespace CUDANet::Kernels {
template <typename T>
__global__ void convolution( __global__ void convolution(
const float* __restrict__ d_input, const T* __restrict__ d_input,
const float* __restrict__ d_kernel, const T* __restrict__ d_kernel,
const float* __restrict__ d_bias, const T* __restrict__ d_bias,
float* __restrict__ d_output, T* __restrict__ d_output,
const Shape input_shape, const Shape input_shape,
const Shape padding_shape, const Shape padding_shape,
const Shape kernel_shape, const Shape kernel_shape,

View File

@@ -4,188 +4,105 @@
namespace CUDANet::Kernels { namespace CUDANet::Kernels {
/** template <typename T>
* @brief Matrix vector multiplication kernel
*
* @param d_matrix Device pointer to matrix
* @param d_vector Device pointer to vector
* @param d_output Device pointer to output vector
* @param w Width of the matrix
* @param h Height of the matrix
*/
__global__ void mat_vec_mul( __global__ void mat_vec_mul(
const float* __restrict__ d_matrix, const T* __restrict__ d_matrix,
const float* __restrict__ d_vector, const T* __restrict__ d_vector,
float* __restrict__ d_output, T* __restrict__ d_output,
const unsigned int w, const unsigned int w,
const unsigned int h const unsigned int h
); );
/** template <typename T>
* @brief Vector vector addition kernel
*
* @param d_vector1 Device pointer to first vector
* @param d_vector2 Device pointer to second vector
* @param d_output Device pointer to output vector
* @param w Length of the vectors
*/
__global__ void vec_vec_add( __global__ void vec_vec_add(
const float* __restrict__ d_vector1, const T* __restrict__ d_vector1,
const float* __restrict__ d_vector2, const T* __restrict__ d_vector2,
float* __restrict__ d_output, T* __restrict__ d_output,
const unsigned int w const unsigned int w
); );
/** template <typename T>
* @brief Vector vector subtraction kernel
*
* @param d_vector1
* @param d_vector2
* @param d_output
* @param w
* @return __global__
*/
__global__ void vec_vec_sub( __global__ void vec_vec_sub(
const float* __restrict__ d_vector1, const T* __restrict__ d_vector1,
const float* __restrict__ d_vector2, const T* __restrict__ d_vector2,
float* __restrict__ d_output, T* __restrict__ d_output,
const unsigned int w const unsigned int w
); );
template <typename T>
__global__ void vec_vec_mul( __global__ void vec_vec_mul(
const float* __restrict__ d_vector1, const T* __restrict__ d_vector1,
const float* __restrict__ d_vector2, const T* __restrict__ d_vector2,
float* __restrict__ d_output, T* __restrict__ d_output,
const unsigned int w const unsigned int w
); );
/** template <typename T>
* @brief Sub scalar from each element of the vector
*
* @param d_vector
* @param d_scalar
* @param d_output
* @param w
* @return __global__
*/
__global__ void vec_scalar_sub( __global__ void vec_scalar_sub(
const float* __restrict__ d_src, const T* __restrict__ d_src,
float* __restrict__ d_out, T* __restrict__ d_out,
const float* __restrict__ d_scalar, const T* __restrict__ d_scalar,
const unsigned int len const unsigned int len
); );
/** template <typename T>
* @brief Add scalar to each element of the vector
*
* @param d_src
* @param d_out
* @param d_scalar
* @param len
* @return __global__
*/
__global__ void vec_scalar_add( __global__ void vec_scalar_add(
const float* __restrict__ d_src, const T* __restrict__ d_src,
float* __restrict__ d_out, T* __restrict__ d_out,
const float* __restrict__ d_scalar, const T* __restrict__ d_scalar,
const unsigned int len const unsigned int len
); );
/** template <typename T>
* @brief Divide each element of the vector by a scalar
*
* @param src Pointer to the source array
* @param dst Pointer to the destination array
* @param len Length of the arrays
*/
__global__ void vec_scalar_div( __global__ void vec_scalar_div(
const float* __restrict__ d_src, const T* __restrict__ d_src,
float* __restrict__ d_out, T* __restrict__ d_out,
const float* __restrict__ d_scalar, const T* __restrict__ d_scalar,
const unsigned int len const unsigned int len
); );
/** template <typename T>
* @brief Multiply each element of the vector by a scalar
*
* @param d_src
* @param d_out
* @param d_scalar
* @param len
* @return __global__
*/
__global__ void vec_scalar_mul( __global__ void vec_scalar_mul(
const float* __restrict__ d_src, const T* __restrict__ d_src,
float* __restrict__ d_out, T* __restrict__ d_out,
const float* __restrict__ d_scalar, const T* __restrict__ d_scalar,
const unsigned int len const unsigned int len
); );
/** template <typename T>
* @brief Exponentiate each element of the vector
*
* @param src Pointer to the source array
* @param dst Pointer to the destination array
* @param len Length of the arrays
*/
__global__ void vec_exp( __global__ void vec_exp(
const float* __restrict__ src, const T* __restrict__ src,
float* __restrict__ dst, T* __restrict__ dst,
const unsigned int len const unsigned int len
); );
/** template <typename T>
* @brief Compute the square root of each element of the vector
*
* @param src Device pointer to source vector
* @param dst Device pointer to destination vector
* @param len Length of the vector
*/
__global__ void vec_sqrt( __global__ void vec_sqrt(
const float* __restrict__ src, const T* __restrict__ src,
float* __restrict__ dst, T* __restrict__ dst,
const unsigned int len const unsigned int len
); );
/** template <typename T>
* @brief Scales the vector by 1/sqrt(scale + epsilon)
*
* @param src Device pointer to source vector
* @param dst Device pointer to destination vector
* @param scale Scale
* @param epsilon Epsilon
* @param len Length of the vector
*/
__global__ void vec_scale( __global__ void vec_scale(
const float* __restrict__ src, const T* __restrict__ src,
float* __restrict__ dst, T* __restrict__ dst,
const float* __restrict__ scale, const T* __restrict__ scale,
const float* epsilon, const T* epsilon,
const unsigned int len const unsigned int len
); );
/** template <typename T>
* @brief Max reduction kernel
*
* @param d_vector Device pointer to vector
* @param d_output Device pointer to output vector
*/
__global__ void max_reduce( __global__ void max_reduce(
const float* __restrict__ d_vector, const T* __restrict__ d_vector,
float* __restrict__ d_output, T* __restrict__ d_output,
const unsigned int len const unsigned int len
); );
/** template <typename T>
* @brief
*
* @param d_vector Device pointer to vector
* @param d_output Device pointer to output vector
* @param len Length of the vector
*/
__global__ void sum_reduce( __global__ void sum_reduce(
const float* __restrict__ d_vector, const T* __restrict__ d_vector,
float* __restrict__ d_output, T* __restrict__ d_output,
const unsigned int len const unsigned int len
); );

View File

@@ -5,9 +5,10 @@
namespace CUDANet::Kernels { namespace CUDANet::Kernels {
template <typename T>
__global__ void max_pool( __global__ void max_pool(
const float* __restrict__ d_input, const T* __restrict__ d_input,
float* __restrict__ d_output, T* __restrict__ d_output,
const Shape input_shape, const Shape input_shape,
const Shape output_shape, const Shape output_shape,
const Shape pool_shape, const Shape pool_shape,
@@ -15,9 +16,10 @@ __global__ void max_pool(
const Shape padding_shape const Shape padding_shape
); );
template <typename T>
__global__ void avg_pool( __global__ void avg_pool(
const float* __restrict__ d_input, const T* __restrict__ d_input,
float* __restrict__ d_output, T* __restrict__ d_output,
const Shape input_shape, const Shape input_shape,
const Shape output_shape, const Shape output_shape,
const Shape pool_shape, const Shape pool_shape,

View File

@@ -33,7 +33,7 @@ public:
~Tensor(); ~Tensor();
DType get_dtype(); DType get_dtype() const;
size_t size() const; size_t size() const;
size_t numel() const; size_t numel() const;

View File

@@ -2,10 +2,18 @@
using namespace CUDANet; using namespace CUDANet;
__global__ void Kernels::sigmoid( template
__global__ void Kernels::sigmoid<float>(
const float* __restrict__ src, const float* __restrict__ src,
float* __restrict__ dst, float* __restrict__ dst,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::sigmoid(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
) { ) {
int stride = gridDim.x * blockDim.x; int stride = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
@@ -15,10 +23,17 @@ __global__ void Kernels::sigmoid(
} }
} }
__global__ void Kernels::relu( template __global__ void Kernels::relu<float>(
const float* __restrict__ src, const float* __restrict__ src,
float* __restrict__ dst, float* __restrict__ dst,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::relu(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
) { ) {
int stride = gridDim.x * blockDim.x; int stride = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;

View File

@@ -4,7 +4,7 @@
using namespace CUDANet; using namespace CUDANet;
__global__ void Kernels::convolution( template __global__ void Kernels::convolution<float>(
const float* __restrict__ d_input, const float* __restrict__ d_input,
const float* __restrict__ d_kernel, const float* __restrict__ d_kernel,
const float* __restrict__ d_bias, const float* __restrict__ d_bias,
@@ -14,6 +14,19 @@ __global__ void Kernels::convolution(
const Shape kernel_shape, const Shape kernel_shape,
const Shape stride_shape, const Shape stride_shape,
const Shape output_shape const Shape output_shape
);
template <typename T>
__global__ void Kernels::convolution(
const T* __restrict__ d_input,
const T* __restrict__ d_kernel,
const T* __restrict__ d_bias,
T* __restrict__ d_output,
const Shape input_shape,
const Shape padding_shape,
const Shape kernel_shape,
const Shape stride_shape,
const Shape output_shape
) { ) {
int j = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.y * blockIdx.y + threadIdx.y; int i = blockDim.y * blockIdx.y + threadIdx.y;
@@ -23,7 +36,7 @@ __global__ void Kernels::convolution(
return; return;
} }
float sum = 0.0f; T sum = static_cast<t>(0);
// Iterate over kernel and input matrix // Iterate over kernel and input matrix
for (int c = 0; c < input_shape[2]; c++) { for (int c = 0; c < input_shape[2]; c++) {

View File

@@ -3,17 +3,26 @@
using namespace CUDANet; using namespace CUDANet;
__global__ void Kernels::mat_vec_mul( template __global__ void Kernels::mat_vec_mul<float>(
const float* __restrict__ d_matrix, const float* __restrict__ d_matrix,
const float* __restrict__ d_vector, const float* __restrict__ d_vector,
float* __restrict__ d_output, float* __restrict__ d_output,
const unsigned int w, const unsigned int w,
const unsigned int h const unsigned int h
);
template <typename T>
__global__ void Kernels::mat_vec_mul(
const T* __restrict__ d_matrix,
const T* __restrict__ d_vector,
T* __restrict__ d_output,
const unsigned int w,
const unsigned int h
) { ) {
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid < h) { if (tid < h) {
float temp = 0.0f; T temp = static_cast<T>(0);
for (unsigned int j = 0; j < w; j++) { for (unsigned int j = 0; j < w; j++) {
temp += d_matrix[tid * w + j] * d_vector[j]; temp += d_matrix[tid * w + j] * d_vector[j];
@@ -23,11 +32,19 @@ __global__ void Kernels::mat_vec_mul(
} }
} }
__global__ void Kernels::vec_vec_add( template __global__ void Kernels::vec_vec_add<float>(
const float* __restrict__ d_vector1, const float* __restrict__ d_vector1,
const float* __restrict__ d_vector2, const float* __restrict__ d_vector2,
float* __restrict__ d_output, float* __restrict__ d_output,
const unsigned int w const unsigned int w
);
template <typename T>
__global__ void Kernels::vec_vec_add(
const T* __restrict__ d_vector1,
const T* __restrict__ d_vector2,
T* __restrict__ d_output,
const unsigned int w
) { ) {
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= w) { if (tid >= w) {
@@ -36,11 +53,19 @@ __global__ void Kernels::vec_vec_add(
d_output[tid] = d_vector1[tid] + d_vector2[tid]; d_output[tid] = d_vector1[tid] + d_vector2[tid];
} }
__global__ void Kernels::vec_vec_sub( template __global__ void Kernels::vec_vec_sub<float>(
const float* __restrict__ d_vector1, const float* __restrict__ d_vector1,
const float* __restrict__ d_vector2, const float* __restrict__ d_vector2,
float* __restrict__ d_output, float* __restrict__ d_output,
const unsigned int w const unsigned int w
);
template <typename T>
__global__ void Kernels::vec_vec_sub(
const T* __restrict__ d_vector1,
const T* __restrict__ d_vector2,
T* __restrict__ d_output,
const unsigned int w
) { ) {
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= w) { if (tid >= w) {
@@ -49,11 +74,19 @@ __global__ void Kernels::vec_vec_sub(
d_output[tid] = d_vector1[tid] - d_vector2[tid]; d_output[tid] = d_vector1[tid] - d_vector2[tid];
} }
__global__ void Kernels::vec_vec_mul( template __global__ void Kernels::vec_vec_mul<float>(
const float* __restrict__ d_vector1, const float* __restrict__ d_vector1,
const float* __restrict__ d_vector2, const float* __restrict__ d_vector2,
float* __restrict__ d_output, float* __restrict__ d_output,
const unsigned int w const unsigned int w
);
template <typename T>
__global__ void Kernels::vec_vec_mul(
const T* __restrict__ d_vector1,
const T* __restrict__ d_vector2,
T* __restrict__ d_output,
const unsigned int w
) { ) {
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= w) { if (tid >= w) {
@@ -62,11 +95,19 @@ __global__ void Kernels::vec_vec_mul(
d_output[tid] = d_vector1[tid] * d_vector2[tid]; d_output[tid] = d_vector1[tid] * d_vector2[tid];
} }
__global__ void Kernels::vec_scalar_sub( template __global__ void Kernels::vec_scalar_sub<float>(
const float* __restrict__ d_src, const float* __restrict__ d_src,
float* __restrict__ d_out, float* __restrict__ d_out,
const float* __restrict__ d_scalar, const float* __restrict__ d_scalar,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_scalar_sub(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
) { ) {
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= len) { if (tid >= len) {
@@ -75,11 +116,19 @@ __global__ void Kernels::vec_scalar_sub(
d_out[tid] = d_src[tid] - *d_scalar; d_out[tid] = d_src[tid] - *d_scalar;
} }
__global__ void Kernels::vec_scalar_add( template __global__ void Kernels::vec_scalar_add<float>(
const float* __restrict__ d_src, const float* __restrict__ d_src,
float* __restrict__ d_out, float* __restrict__ d_out,
const float* __restrict__ d_scalar, const float* __restrict__ d_scalar,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_scalar_add(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
) { ) {
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= len) { if (tid >= len) {
@@ -88,11 +137,19 @@ __global__ void Kernels::vec_scalar_add(
d_out[tid] = d_src[tid] + *d_scalar; d_out[tid] = d_src[tid] + *d_scalar;
} }
__global__ void Kernels::vec_scalar_div( template __global__ void Kernels::vec_scalar_div<float>(
const float* __restrict__ d_src, const float* __restrict__ d_src,
float* __restrict__ d_out, float* __restrict__ d_out,
const float* __restrict__ d_scalar, const float* __restrict__ d_scalar,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_scalar_div(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
) { ) {
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= len) { if (tid >= len) {
@@ -101,11 +158,19 @@ __global__ void Kernels::vec_scalar_div(
d_out[tid] = d_src[tid] / *d_scalar; d_out[tid] = d_src[tid] / *d_scalar;
} }
__global__ void Kernels::vec_scalar_mul( template __global__ void Kernels::vec_scalar_mul<float>(
const float* __restrict__ d_src, const float* __restrict__ d_src,
float* __restrict__ d_out, float* __restrict__ d_out,
const float* __restrict__ d_scalar, const float* __restrict__ d_scalar,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_scalar_mul(
const T* __restrict__ d_src,
T* __restrict__ d_out,
const T* __restrict__ d_scalar,
const unsigned int len
) { ) {
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
if (tid >= len) { if (tid >= len) {
@@ -114,52 +179,85 @@ __global__ void Kernels::vec_scalar_mul(
d_out[tid] = d_src[tid] * *d_scalar; d_out[tid] = d_src[tid] * *d_scalar;
} }
__global__ void Kernels::vec_exp( template __global__ void Kernels::vec_exp<float>(
const float* __restrict__ src, const float* __restrict__ src,
float* __restrict__ dst, float* __restrict__ dst,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_exp(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
) { ) {
int stride = gridDim.x * blockDim.x; int stride = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = tid; i < len; i += stride) { for (int i = tid; i < len; i += stride) {
// TODO: separate implementation for __half
dst[i] = expf(src[i]); dst[i] = expf(src[i]);
} }
} }
__global__ void Kernels::vec_sqrt( template __global__ void Kernels::vec_sqrt<float>(
const float* __restrict__ src, const float* __restrict__ src,
float* __restrict__ dst, float* __restrict__ dst,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_sqrt(
const T* __restrict__ src,
T* __restrict__ dst,
const unsigned int len
) { ) {
int stride = gridDim.x * blockDim.x; int stride = gridDim.x * blockDim.x;
int tid = blockDim.x * blockIdx.x + threadIdx.x; int tid = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = tid; i < len; i += stride) { for (int i = tid; i < len; i += stride) {
// TODO: separate implementation for __half
dst[i] = sqrtf(src[i]); dst[i] = sqrtf(src[i]);
} }
} }
__global__ void Kernels::vec_scale( template __global__ void Kernels::vec_scale<float>(
const float* __restrict__ src, const float* __restrict__ src,
float* __restrict__ dst, float* __restrict__ dst,
const float* __restrict__ scale, const float* __restrict__ scale,
const float* epsilon, const float* epsilon,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::vec_scale(
const T* __restrict__ src,
T* __restrict__ dst,
const T* __restrict__ scale,
const T* epsilon,
const unsigned int len
) { ) {
int idx = blockIdx.x * blockDim.x + threadIdx.x; int idx = blockIdx.x * blockDim.x + threadIdx.x;
if (idx < len) { if (idx < len) {
// TODO: separate implementation for __half
float inv_std = rsqrtf(*scale + *epsilon); float inv_std = rsqrtf(*scale + *epsilon);
dst[idx] = src[idx] * inv_std; dst[idx] = src[idx] * inv_std;
} }
} }
__global__ void Kernels::max_reduce( template __global__ void Kernels::max_reduce<float>(
const float* __restrict__ d_vector, const float* __restrict__ d_vector,
float* __restrict__ d_output, float* __restrict__ d_output,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::max_reduce(
const T* __restrict__ d_vector,
T* __restrict__ d_output,
const unsigned int len
) { ) {
__shared__ float shared_max[BLOCK_SIZE]; __shared__ T shared_max[BLOCK_SIZE];
int i = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < len) { if (i < len) {
@@ -172,6 +270,7 @@ __global__ void Kernels::max_reduce(
for (int s = blockDim.x / 2; s > 0; s >>= 1) { for (int s = blockDim.x / 2; s > 0; s >>= 1) {
if (threadIdx.x < s) { if (threadIdx.x < s) {
// TODO: separate implementation for __half
shared_max[threadIdx.x] = fmaxf(shared_max[threadIdx.x], shared_max[threadIdx.x + s]); shared_max[threadIdx.x] = fmaxf(shared_max[threadIdx.x], shared_max[threadIdx.x + s]);
} }
__syncthreads(); __syncthreads();
@@ -182,18 +281,25 @@ __global__ void Kernels::max_reduce(
} }
} }
__global__ void Kernels::sum_reduce( template __global__ void Kernels::sum_reduce<float>(
const float* __restrict__ d_vector, const float* __restrict__ d_vector,
float* __restrict__ d_output, float* __restrict__ d_output,
const unsigned int len const unsigned int len
);
template <typename T>
__global__ void Kernels::sum_reduce(
const T* __restrict__ d_vector,
T* __restrict__ d_output,
const unsigned int len
) { ) {
__shared__ float partial_sum[BLOCK_SIZE]; __shared__ T partial_sum[BLOCK_SIZE];
int i = blockIdx.x * blockDim.x + threadIdx.x; int i = blockIdx.x * blockDim.x + threadIdx.x;
if (i < len) { if (i < len) {
partial_sum[threadIdx.x] = d_vector[i]; partial_sum[threadIdx.x] = d_vector[i];
} else { } else {
partial_sum[threadIdx.x] = 0.0f; partial_sum[threadIdx.x] = static_cast<T>(0);
} }
__syncthreads(); __syncthreads();

View File

@@ -3,7 +3,7 @@
using namespace CUDANet; using namespace CUDANet;
__global__ void Kernels::max_pool( template __global__ void Kernels::max_pool<float>(
const float* __restrict__ d_input, const float* __restrict__ d_input,
float* __restrict__ d_output, float* __restrict__ d_output,
const Shape input_shape, const Shape input_shape,
@@ -11,6 +11,17 @@ __global__ void Kernels::max_pool(
const Shape pool_shape, const Shape pool_shape,
const Shape stride_shape, const Shape stride_shape,
const Shape padding_shape const Shape padding_shape
);
template <typename T>
__global__ void Kernels::max_pool(
const T* __restrict__ d_input,
T* __restrict__ d_output,
const Shape input_shape,
const Shape output_shape,
const Shape pool_shape,
const Shape stride_shape,
const Shape padding_shape
) { ) {
int j = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.y * blockIdx.y + threadIdx.y; int i = blockDim.y * blockIdx.y + threadIdx.y;
@@ -20,7 +31,7 @@ __global__ void Kernels::max_pool(
return; return;
} }
float max = 0.0f; T max = static_cast<T>(0);
for (int k = 0; k < pool_shape[0]; k++) { for (int k = 0; k < pool_shape[0]; k++) {
for (int l = 0; l < pool_shape[1]; l++) { for (int l = 0; l < pool_shape[1]; l++) {
@@ -43,7 +54,7 @@ __global__ void Kernels::max_pool(
max; max;
} }
__global__ void Kernels::avg_pool( template __global__ void Kernels::avg_pool<float>(
const float* __restrict__ d_input, const float* __restrict__ d_input,
float* __restrict__ d_output, float* __restrict__ d_output,
const Shape input_shape, const Shape input_shape,
@@ -51,6 +62,17 @@ __global__ void Kernels::avg_pool(
const Shape pool_shape, const Shape pool_shape,
const Shape stride_shape, const Shape stride_shape,
const Shape padding_shape const Shape padding_shape
);
template <typename T>
__global__ void Kernels::avg_pool(
const T* __restrict__ d_input,
T* __restrict__ d_output,
const Shape input_shape,
const Shape output_shape,
const Shape pool_shape,
const Shape stride_shape,
const Shape padding_shape
) { ) {
int j = blockDim.x * blockIdx.x + threadIdx.x; int j = blockDim.x * blockIdx.x + threadIdx.x;
int i = blockDim.y * blockIdx.y + threadIdx.y; int i = blockDim.y * blockIdx.y + threadIdx.y;
@@ -60,7 +82,7 @@ __global__ void Kernels::avg_pool(
return; return;
} }
float sum = 0.0f; T sum = static_cast<T>(0);
for (int k = 0; k < pool_shape[0]; k++) { for (int k = 0; k < pool_shape[0]; k++) {
for (int l = 0; l < pool_shape[1]; l++) { for (int l = 0; l < pool_shape[1]; l++) {

View File

@@ -7,24 +7,70 @@
using namespace CUDANet::Backends; using namespace CUDANet::Backends;
void CUDA::relu(Tensor& tensor) { void CUDA::relu(Tensor& tensor) {
switch (tensor.get_dtype()) {
case DType::FLOAT32:
relu_impl<float>(tensor);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::relu_impl<float>(Tensor& tensor);
template <typename T>
void CUDA::relu_impl(Tensor& tensor) {
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE; int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::relu<<<gridSize, BLOCK_SIZE>>>( Kernels::relu<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), tensor.numel() tensor.data<T>(), tensor.data<T>(), tensor.numel()
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaDeviceSynchronize());
} }
void CUDA::sigmoid(Tensor& tensor) { void CUDA::sigmoid(CUDANet::Tensor& tensor) {
switch (tensor.get_dtype()) {
case DType::FLOAT32:
sigmoid_impl<float>(tensor);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::sigmoid_impl<float>(Tensor& tensor);
template <typename T>
void CUDA::sigmoid_impl(CUDANet::Tensor& tensor) {
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE; int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::sigmoid<<<gridSize, BLOCK_SIZE>>>( Kernels::sigmoid<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), tensor.numel() tensor.data<T>(), tensor.data<T>(), tensor.numel()
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaDeviceSynchronize());
} }
void CUDA::softmax(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) { void CUDA::softmax(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
switch (tensor.get_dtype()) {
case DType::FLOAT32:
softmax_impl<float>(tensor, temp_max, temp_sum);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void
CUDA::softmax_impl<float>(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum);
template <typename T>
void CUDA::softmax_impl(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE; int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
// Find max value // Find max value
@@ -32,14 +78,13 @@ void CUDA::softmax(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
// Subtract max value to improve numerical stability // Subtract max value to improve numerical stability
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>( Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), temp_max.data<float>(), tensor.data<T>(), tensor.data<T>(), temp_max.data<T>(), tensor.numel()
tensor.numel()
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
// Compute exponentials // Compute exponentials
Kernels::vec_exp<<<gridSize, BLOCK_SIZE>>>( Kernels::vec_exp<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), tensor.numel() tensor.data<T>(), tensor.data<T>(), tensor.numel()
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
@@ -47,8 +92,7 @@ void CUDA::softmax(Tensor& tensor, Tensor& temp_max, Tensor& temp_sum) {
sum(tensor, temp_sum); sum(tensor, temp_sum);
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>( Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
tensor.data<float>(), tensor.data<float>(), temp_sum.data<float>(), tensor.data<T>(), tensor.data<T>(), temp_sum.data<T>(), tensor.numel()
tensor.numel()
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaDeviceSynchronize());
@@ -61,20 +105,50 @@ CUDANet::Tensor& CUDA::dense(
CUDANet::Tensor& output, CUDANet::Tensor& output,
const size_t input_size, const size_t input_size,
const size_t output_size const size_t output_size
) {
switch (input.get_dtype()) {
case DType::FLOAT32:
return dense_impl<float>(
weights, biases, input, output, input_size, output_size
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::dense_impl<float>(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
);
template <typename T>
CUDANet::Tensor& CUDA::dense_impl(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const size_t input_size,
const size_t output_size
) { ) {
auto forwardGridSize = auto forwardGridSize =
(std::max(input_size, output_size) + BLOCK_SIZE - 1) / BLOCK_SIZE; (std::max(input_size, output_size) + BLOCK_SIZE - 1) / BLOCK_SIZE;
auto biasGridSize = (output_size + BLOCK_SIZE - 1) / BLOCK_SIZE; auto biasGridSize = (output_size + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::mat_vec_mul<<<forwardGridSize, BLOCK_SIZE>>>( Kernels::mat_vec_mul<<<forwardGridSize, BLOCK_SIZE>>>(
weights.data<float>(), input.data<float>(), output.data<float>(), weights.data<T>(), input.data<T>(), output.data<T>(), input_size,
input_size, output_size output_size
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
Kernels::vec_vec_add<<<biasGridSize, BLOCK_SIZE>>>( Kernels::vec_vec_add<<<biasGridSize, BLOCK_SIZE>>>(
biases.data<float>(), output.data<float>(), output.data<float>(), biases.data<T>(), output.data<T>(), output.data<T>(), output_size
output_size
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaDeviceSynchronize());
@@ -92,6 +166,44 @@ CUDANet::Tensor& CUDA::conv2d(
const CUDANet::Shape kernel_shape, const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape, const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape const CUDANet::Shape out_shape
) {
switch (input.get_dtype()) {
case DType::FLOAT32:
return conv2d_impl<float>(
weights, biases, input, output, in_shape, padding_shape,
kernel_shape, stride_shape, out_shape
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::conv2d_impl<float>(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const CUDANet::Shape in_shape,
const CUDANet::Shape padding_shape,
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
);
template <typename T>
CUDANet::Tensor& CUDA::conv2d_impl(
const CUDANet::Tensor& weights,
const CUDANet::Tensor& biases,
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
const CUDANet::Shape in_shape,
const CUDANet::Shape padding_shape,
const CUDANet::Shape kernel_shape,
const CUDANet::Shape stride_shape,
const CUDANet::Shape out_shape
) { ) {
dim3 block(8, 8, 8); dim3 block(8, 8, 8);
dim3 grid( dim3 grid(
@@ -101,9 +213,8 @@ CUDANet::Tensor& CUDA::conv2d(
); );
Kernels::convolution<<<grid, block>>>( Kernels::convolution<<<grid, block>>>(
input.data<float>(), weights.data<float>(), biases.data<float>(), input.data<T>(), weights.data<T>(), biases.data<T>(), output.data<T>(),
output.data<float>(), in_shape, padding_shape, kernel_shape, in_shape, padding_shape, kernel_shape, stride_shape, out_shape
stride_shape, out_shape
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaDeviceSynchronize());
@@ -119,6 +230,40 @@ CUDANet::Tensor& CUDA::max_pool2d(
CUDANet::Shape stride_shape, CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape, CUDANet::Shape padding_shape,
CUDANet::Shape output_shape CUDANet::Shape output_shape
) {
switch (input.get_dtype()) {
case DType::FLOAT32:
return max_pool2d_impl<float>(
input, output, input_shape, pool_shape, stride_shape,
padding_shape, output_shape
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::max_pool2d_impl<float>(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
);
template <typename T>
CUDANet::Tensor& CUDA::max_pool2d_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) { ) {
dim3 block(8, 8, 8); dim3 block(8, 8, 8);
dim3 grid( dim3 grid(
@@ -128,8 +273,8 @@ CUDANet::Tensor& CUDA::max_pool2d(
); );
Kernels::max_pool<<<grid, block>>>( Kernels::max_pool<<<grid, block>>>(
input.data<float>(), output.data<float>(), input_shape, output_shape, pool_shape, input.data<T>(), output.data<T>(), input_shape, output_shape,
stride_shape, padding_shape pool_shape, stride_shape, padding_shape
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaDeviceSynchronize());
@@ -145,6 +290,40 @@ CUDANet::Tensor& CUDA::avg_pool2d(
CUDANet::Shape stride_shape, CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape, CUDANet::Shape padding_shape,
CUDANet::Shape output_shape CUDANet::Shape output_shape
) {
switch (input.get_dtype()) {
case DType::FLOAT32:
return avg_pool2d_impl<float>(
input, output, input_shape, pool_shape, stride_shape,
padding_shape, output_shape
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::avg_pool2d_impl<float>(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
);
template <typename T>
CUDANet::Tensor& CUDA::avg_pool2d_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Shape pool_shape,
CUDANet::Shape stride_shape,
CUDANet::Shape padding_shape,
CUDANet::Shape output_shape
) { ) {
dim3 block(8, 8, 8); dim3 block(8, 8, 8);
dim3 grid( dim3 grid(
@@ -154,8 +333,8 @@ CUDANet::Tensor& CUDA::avg_pool2d(
); );
Kernels::avg_pool<<<grid, block>>>( Kernels::avg_pool<<<grid, block>>>(
input.data<float>(), output.data<float>(), input_shape, output_shape, pool_shape, input.data<T>(), output.data<T>(), input_shape, output_shape,
stride_shape, padding_shape pool_shape, stride_shape, padding_shape
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaDeviceSynchronize());
@@ -172,41 +351,77 @@ CUDANet::Tensor& CUDA::batch_norm(
CUDANet::Tensor& running_mean, CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var, CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon CUDANet::Tensor& epsilon
) {
switch (input.get_dtype()) {
case DType::FLOAT32:
return batch_norm_impl<float>(
input, output, input_shape, weights, biases, running_mean,
running_var, epsilon
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::batch_norm_impl<float>(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
);
template <typename T>
CUDANet::Tensor& CUDA::batch_norm_impl(
const CUDANet::Tensor& input,
CUDANet::Tensor& output,
CUDANet::Shape input_shape,
CUDANet::Tensor& weights,
CUDANet::Tensor& biases,
CUDANet::Tensor& running_mean,
CUDANet::Tensor& running_var,
CUDANet::Tensor& epsilon
) { ) {
auto gridSize = auto gridSize =
(input_shape[0] * input_shape[1] + BLOCK_SIZE - 1) / BLOCK_SIZE; (input_shape[0] * input_shape[1] + BLOCK_SIZE - 1) / BLOCK_SIZE;
for (int i = 0; i < input_shape[2]; i++) { for (int i = 0; i < input_shape[2]; i++) {
// Subtract mean from input // Subtract mean from input
Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>( Kernels::vec_scalar_sub<<<gridSize, BLOCK_SIZE>>>(
input.data<float>() + i * input_shape[0] * input_shape[1], input.data<T>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1], output.data<T>() + i * input_shape[0] * input_shape[1],
&running_mean.data<float>()[i], input_shape[0] * input_shape[1] &running_mean.data<T>()[i], input_shape[0] * input_shape[1]
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
// Divide by sqrt(running_var + epsilon) // Divide by sqrt(running_var + epsilon)
Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>( Kernels::vec_scale<<<gridSize, BLOCK_SIZE>>>(
output.data<float>() + i * input_shape[0] * input_shape[1], output.data<T>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1], output.data<T>() + i * input_shape[0] * input_shape[1],
&running_var.data<float>()[i], epsilon.data<float>(), input_shape[0] * input_shape[1] &running_var.data<T>()[i], epsilon.data<T>(),
input_shape[0] * input_shape[1]
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
// Multiply by weights // Multiply by weights
Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>( Kernels::vec_scalar_mul<<<gridSize, BLOCK_SIZE>>>(
output.data<float>() + i * input_shape[0] * input_shape[1], output.data<T>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1], &weights.data<float>()[i], output.data<T>() + i * input_shape[0] * input_shape[1],
input_shape[0] * input_shape[1] &weights.data<T>()[i], input_shape[0] * input_shape[1]
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
// Add biases // Add biases
Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>( Kernels::vec_scalar_add<<<gridSize, BLOCK_SIZE>>>(
output.data<float>() + i * input_shape[0] * input_shape[1], output.data<T>() + i * input_shape[0] * input_shape[1],
output.data<float>() + i * input_shape[0] * input_shape[1], &biases.data<float>()[i], output.data<T>() + i * input_shape[0] * input_shape[1],
input_shape[0] * input_shape[1] &biases.data<T>()[i], input_shape[0] * input_shape[1]
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
} }
@@ -218,14 +433,39 @@ CUDANet::Tensor& CUDA::concat(
CUDANet::Tensor& input_a, CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b, CUDANet::Tensor& input_b,
CUDANet::Tensor& output CUDANet::Tensor& output
) {
switch (input_a.get_dtype()) {
case DType::FLOAT32:
return concat_impl<float>(
input_a, input_b, output
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::concat_impl<float>(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
);
template <typename T>
CUDANet::Tensor& CUDA::concat_impl(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) { ) {
CUDA_CHECK(cudaMemcpy( CUDA_CHECK(cudaMemcpy(
output.data<float>(), input_a.data<float>(), input_a.size(), output.data<T>(), input_a.data<T>(), input_a.size(),
cudaMemcpyDeviceToDevice cudaMemcpyDeviceToDevice
)); ));
CUDA_CHECK(cudaMemcpy( CUDA_CHECK(cudaMemcpy(
output.data<float>() + input_a.numel(), input_b.data<float>(), input_b.size(), output.data<T>() + input_a.numel(), input_b.data<T>(), input_b.size(),
cudaMemcpyDeviceToDevice cudaMemcpyDeviceToDevice
)); ));
@@ -239,11 +479,36 @@ CUDANet::Tensor& CUDA::add(
CUDANet::Tensor& input_a, CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b, CUDANet::Tensor& input_b,
CUDANet::Tensor& output CUDANet::Tensor& output
) {
switch (input_a.get_dtype()) {
case DType::FLOAT32:
return add_impl<float>(
input_a, input_b, output
);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template CUDANet::Tensor& CUDA::add_impl<float>(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
);
template <typename T>
CUDANet::Tensor& CUDA::add_impl(
CUDANet::Tensor& input_a,
CUDANet::Tensor& input_b,
CUDANet::Tensor& output
) { ) {
auto gridSize = (input_a.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE; auto gridSize = (input_a.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::vec_vec_add<<<gridSize, BLOCK_SIZE>>>( Kernels::vec_vec_add<<<gridSize, BLOCK_SIZE>>>(
input_a.data<float>(), input_b.data<float>(), output.data<float>(), input_a.numel() input_a.data<T>(), input_b.data<T>(), output.data<T>(), input_a.numel()
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
CUDA_CHECK(cudaDeviceSynchronize()); CUDA_CHECK(cudaDeviceSynchronize());

View File

@@ -7,11 +7,26 @@
using namespace CUDANet::Backends; using namespace CUDANet::Backends;
void CUDA::print(const CUDANet::Tensor &input) { void CUDA::print(const CUDANet::Tensor &input) {
switch (input.get_dtype()) {
case DType::FLOAT32:
print_impl<float>(input);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::print_impl<float> (const CUDANet::Tensor &input);
template <typename T>
void CUDA::print_impl(const CUDANet::Tensor &input) {
auto length = input.numel(); auto length = input.numel();
std::vector<float> h_vec(input.numel()); std::vector<T> h_vec(input.numel());
CUDA_CHECK(cudaMemcpy( CUDA_CHECK(cudaMemcpy(
h_vec.data(), input.data<float>(), sizeof(float) * length, cudaMemcpyDeviceToHost h_vec.data(), input.data<T>(), sizeof(T) * length, cudaMemcpyDeviceToHost
)); ));
for (int i = 0; i < length; ++i) { for (int i = 0; i < length; ++i) {
@@ -26,27 +41,71 @@ void CUDA::zero(CUDANet::Tensor &input) {
} }
void CUDA::fill(CUDANet::Tensor &input, int value) { void CUDA::fill(CUDANet::Tensor &input, int value) {
CUDA_CHECK(cudaMemset(input.data<float>(), value, sizeof(float) * input.numel())); switch (input.get_dtype()) {
case DType::FLOAT32:
fill_impl<float>(input, value);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::fill_impl<float>(CUDANet::Tensor &input, int value);
template <typename T>
void CUDA::fill_impl(CUDANet::Tensor &input, int value) {
CUDA_CHECK(cudaMemset(input.data<T>(), value, sizeof(T) * input.numel()));
} }
void CUDA::copy_to_device(CUDANet::Tensor &tensor, void *data, size_t size) { void CUDA::copy_to_device(CUDANet::Tensor &tensor, void *data, size_t size) {
CUDA_CHECK(cudaMemcpy(tensor.data<float>(), data, size, cudaMemcpyHostToDevice)); switch (tensor.get_dtype()) {
case DType::FLOAT32:
copy_to_device_impl<float>(tensor, data, size);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::copy_to_device_impl<float>(CUDANet::Tensor &tensor, void *data, size_t size);
template <typename T>
void CUDA::copy_to_device_impl(CUDANet::Tensor &tensor, void *data, size_t size) {
CUDA_CHECK(cudaMemcpy(tensor.data<T>(), data, size, cudaMemcpyHostToDevice));
} }
void CUDA::sum(const CUDANet::Tensor &input, CUDANet::Tensor &sum) { void CUDA::sum(const CUDANet::Tensor &input, CUDANet::Tensor &sum) {
switch (input.get_dtype()) {
case DType::FLOAT32:
sum_impl<float>(input, sum);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::sum_impl<float>(const CUDANet::Tensor &input, CUDANet::Tensor &sum);
template <typename T>
void CUDA::sum_impl(const CUDANet::Tensor &input, CUDANet::Tensor &sum) {
auto length = input.numel(); auto length = input.numel();
const int gridSize = ( + BLOCK_SIZE - 1) / BLOCK_SIZE; const int gridSize = ( + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>( CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
input.data<float>(), sum.data<float>(), length input.data<T>(), sum.data<T>(), length
); );
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
int remaining = gridSize; int remaining = gridSize;
while (remaining > 1) { while (remaining > 1) {
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE; int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(sum.data<float>(), sum.data<float>(), remaining); CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(sum.data<T>(), sum.data<T>(), remaining);
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
remaining = blocks_needed; remaining = blocks_needed;
@@ -54,17 +113,32 @@ void CUDA::sum(const CUDANet::Tensor &input, CUDANet::Tensor &sum) {
} }
void CUDA::max(const CUDANet::Tensor &input, CUDANet::Tensor &max) { void CUDA::max(const CUDANet::Tensor &input, CUDANet::Tensor &max) {
switch (input.get_dtype()) {
case DType::FLOAT32:
max_impl<float>(input, max);
break;
default:
throw std::runtime_error("Unsupported dtype");
break;
}
}
template void CUDA::max_impl<float>(const CUDANet::Tensor &input, CUDANet::Tensor &max);
template <typename T>
void CUDA::max_impl(const CUDANet::Tensor &input, CUDANet::Tensor &max) {
auto length = input.numel(); auto length = input.numel();
const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE; const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(input.data<float>(), max.data<float>(), length); Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(input.data<T>(), max.data<T>(), length);
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
int remaining = grid_size; int remaining = grid_size;
while (remaining > 1) { while (remaining > 1) {
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE; int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(max.data<float>(), max.data<float>(), remaining); CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(max.data<T>(), max.data<T>(), remaining);
CUDA_CHECK(cudaGetLastError()); CUDA_CHECK(cudaGetLastError());
remaining = blocks_needed; remaining = blocks_needed;

View File

@@ -56,6 +56,7 @@ size_t Dense::output_size() {
return out_shape[0]; return out_shape[0];
}; };
// TODO: Use dtype
void Dense::set_weights(void* input) { void Dense::set_weights(void* input) {
weights.set_data<float>(static_cast<float*>(input)); weights.set_data<float>(static_cast<float*>(input));
} }

View File

@@ -80,6 +80,10 @@ Tensor::~Tensor() {
} }
} }
DType Tensor::get_dtype() const {
return dtype;
}
size_t Tensor::numel() const { size_t Tensor::numel() const {
return total_elms; return total_elms;
} }