Implement getting layer, weights and biases

This commit is contained in:
2024-04-16 19:09:41 +02:00
parent f4ae45f867
commit 9fb9d7e8e1
7 changed files with 77 additions and 5 deletions

View File

@@ -58,6 +58,13 @@ class Conv2d : public WeightedLayer {
*/
void setWeights(const float* weights_input);
/**
* @brief Get the weights of the convolutional layer
*
* @return std::vector<float>
*/
std::vector<float> getWeights();
/**
* @brief Set the biases of the convolutional layer
*
@@ -65,6 +72,13 @@ class Conv2d : public WeightedLayer {
*/
void setBiases(const float* biases_input);
/**
* @brief Get the biases of the convolutional layer
*
* @return std::vector<float>
*/
std::vector<float> getBiases();
/**
* @brief Get the output width (/ height) of the layer
*

View File

@@ -43,6 +43,13 @@ class Dense : public WeightedLayer {
*/
void setWeights(const float* weights);
/**
* @brief Get the weights of the layer
*
* @return Vector of weights
*/
std::vector<float> getWeights();
/**
* @brief Set the biases of the layer
*
@@ -50,6 +57,13 @@ class Dense : public WeightedLayer {
*/
void setBiases(const float* biases);
/**
* @brief Get the biases of the layer
*
* @return Vector of biases
*/
std::vector<float> getBiases();
private:
unsigned int inputSize;
unsigned int outputSize;

View File

@@ -2,6 +2,8 @@
#ifndef CUDANET_I_LAYER_H
#define CUDANET_I_LAYER_H
#include <vector>
namespace CUDANet::Layers {
/**
@@ -60,6 +62,12 @@ class WeightedLayer : public SequentialLayer {
*/
virtual void setWeights(const float* weights) = 0;
/**
* @brief Virtual function for getting weights
*
*/
virtual std::vector<float> getWeights() = 0;
/**
* @brief Virtual function for setting biases
*
@@ -67,6 +75,12 @@ class WeightedLayer : public SequentialLayer {
*/
virtual void setBiases(const float* biases) = 0;
/**
* @brief Virtual function for getting biases
*
*/
virtual std::vector<float> getBiases() = 0;
private:
/**
* @brief Initialize the weights

View File

@@ -29,6 +29,8 @@ class Model {
float* predict(const float* input);
void addLayer(const std::string& name, Layers::SequentialLayer* layer);
Layers::SequentialLayer* getLayer(const std::string& name);
void loadWeights(const std::string& path);
private:
@@ -41,7 +43,7 @@ class Model {
int outputSize;
std::vector<Layers::SequentialLayer*> layers;
std::unordered_map<std::string, Layers::WeightedLayer*> layerMap;
std::unordered_map<std::string, Layers::SequentialLayer*> layerMap;
};
} // namespace CUDANet

View File

@@ -84,11 +84,19 @@ void Conv2d::setWeights(const float* weights_input) {
toCuda();
}
std::vector<float> Conv2d::getWeights() {
return weights;
}
void Conv2d::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}
std::vector<float> Conv2d::getBiases() {
return biases;
}
void Conv2d::toCuda() {
CUDA_CHECK(cudaMemcpy(
d_weights, weights.data(),

View File

@@ -98,7 +98,15 @@ void Dense::setWeights(const float* weights_input) {
toCuda();
}
std::vector<float> Dense::getWeights() {
return weights;
}
void Dense::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}
std::vector<float> Dense::getBiases() {
return biases;
}

View File

@@ -16,7 +16,7 @@ Model::Model(const int inputSize, const int inputChannels, const int outputSize)
inputChannels(inputChannels),
outputSize(outputSize),
layers(std::vector<Layers::SequentialLayer*>()),
layerMap(std::unordered_map<std::string, Layers::WeightedLayer*>()) {
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
inputLayer = new Layers::Input(inputSize * inputSize * inputChannels);
outputLayer = new Layers::Output(outputSize);
};
@@ -26,7 +26,7 @@ Model::Model(const Model& other)
inputChannels(other.inputChannels),
outputSize(other.outputSize),
layers(std::vector<Layers::SequentialLayer*>()),
layerMap(std::unordered_map<std::string, Layers::WeightedLayer*>()) {
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
inputLayer = new Layers::Input(*other.inputLayer);
outputLayer = new Layers::Output(*other.outputLayer);
}
@@ -59,6 +59,10 @@ void Model::addLayer(const std::string& name, Layers::SequentialLayer* layer) {
}
}
Layers::SequentialLayer* Model::getLayer(const std::string& name) {
return layerMap[name];
}
void Model::loadWeights(const std::string& path) {
std::ifstream file(path, std::ios::binary);
@@ -115,10 +119,18 @@ void Model::loadWeights(const std::string& path) {
file.read(reinterpret_cast<char*>(values.data()), tensorInfo.size * sizeof(float));
if (layerMap.find(tensorInfo.name) != layerMap.end()) {
Layers::WeightedLayer* wLayer = dynamic_cast<Layers::WeightedLayer*>(layerMap[tensorInfo.name]);
if (wLayer == nullptr) {
std::cerr << "Layer: " << tensorInfo.name << "does not have weights, skipping" << std::endl;
continue;
}
if (tensorInfo.type == TensorType::WEIGHT) {
layerMap[tensorInfo.name]->setWeights(values.data());
wLayer->setWeights(values.data());
} else if (tensorInfo.type == TensorType::BIAS) {
layerMap[tensorInfo.name]->setBiases(values.data());
wLayer->setBiases(values.data());
}
}
}