mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Implement getting layer, weights and biases
This commit is contained in:
@@ -58,6 +58,13 @@ class Conv2d : public WeightedLayer {
|
||||
*/
|
||||
void setWeights(const float* weights_input);
|
||||
|
||||
/**
|
||||
* @brief Get the weights of the convolutional layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getWeights();
|
||||
|
||||
/**
|
||||
* @brief Set the biases of the convolutional layer
|
||||
*
|
||||
@@ -65,6 +72,13 @@ class Conv2d : public WeightedLayer {
|
||||
*/
|
||||
void setBiases(const float* biases_input);
|
||||
|
||||
/**
|
||||
* @brief Get the biases of the convolutional layer
|
||||
*
|
||||
* @return std::vector<float>
|
||||
*/
|
||||
std::vector<float> getBiases();
|
||||
|
||||
/**
|
||||
* @brief Get the output width (/ height) of the layer
|
||||
*
|
||||
|
||||
@@ -43,6 +43,13 @@ class Dense : public WeightedLayer {
|
||||
*/
|
||||
void setWeights(const float* weights);
|
||||
|
||||
/**
|
||||
* @brief Get the weights of the layer
|
||||
*
|
||||
* @return Vector of weights
|
||||
*/
|
||||
std::vector<float> getWeights();
|
||||
|
||||
/**
|
||||
* @brief Set the biases of the layer
|
||||
*
|
||||
@@ -50,6 +57,13 @@ class Dense : public WeightedLayer {
|
||||
*/
|
||||
void setBiases(const float* biases);
|
||||
|
||||
/**
|
||||
* @brief Get the biases of the layer
|
||||
*
|
||||
* @return Vector of biases
|
||||
*/
|
||||
std::vector<float> getBiases();
|
||||
|
||||
private:
|
||||
unsigned int inputSize;
|
||||
unsigned int outputSize;
|
||||
|
||||
@@ -2,6 +2,8 @@
|
||||
#ifndef CUDANET_I_LAYER_H
|
||||
#define CUDANET_I_LAYER_H
|
||||
|
||||
#include <vector>
|
||||
|
||||
namespace CUDANet::Layers {
|
||||
|
||||
/**
|
||||
@@ -60,6 +62,12 @@ class WeightedLayer : public SequentialLayer {
|
||||
*/
|
||||
virtual void setWeights(const float* weights) = 0;
|
||||
|
||||
/**
|
||||
* @brief Virtual function for getting weights
|
||||
*
|
||||
*/
|
||||
virtual std::vector<float> getWeights() = 0;
|
||||
|
||||
/**
|
||||
* @brief Virtual function for setting biases
|
||||
*
|
||||
@@ -67,6 +75,12 @@ class WeightedLayer : public SequentialLayer {
|
||||
*/
|
||||
virtual void setBiases(const float* biases) = 0;
|
||||
|
||||
/**
|
||||
* @brief Virtual function for getting biases
|
||||
*
|
||||
*/
|
||||
virtual std::vector<float> getBiases() = 0;
|
||||
|
||||
private:
|
||||
/**
|
||||
* @brief Initialize the weights
|
||||
|
||||
@@ -29,6 +29,8 @@ class Model {
|
||||
float* predict(const float* input);
|
||||
|
||||
void addLayer(const std::string& name, Layers::SequentialLayer* layer);
|
||||
Layers::SequentialLayer* getLayer(const std::string& name);
|
||||
|
||||
void loadWeights(const std::string& path);
|
||||
|
||||
private:
|
||||
@@ -41,7 +43,7 @@ class Model {
|
||||
int outputSize;
|
||||
|
||||
std::vector<Layers::SequentialLayer*> layers;
|
||||
std::unordered_map<std::string, Layers::WeightedLayer*> layerMap;
|
||||
std::unordered_map<std::string, Layers::SequentialLayer*> layerMap;
|
||||
};
|
||||
|
||||
} // namespace CUDANet
|
||||
|
||||
@@ -84,11 +84,19 @@ void Conv2d::setWeights(const float* weights_input) {
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getWeights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void Conv2d::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getBiases() {
|
||||
return biases;
|
||||
}
|
||||
|
||||
void Conv2d::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(),
|
||||
|
||||
@@ -98,7 +98,15 @@ void Dense::setWeights(const float* weights_input) {
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> Dense::getWeights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void Dense::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> Dense::getBiases() {
|
||||
return biases;
|
||||
}
|
||||
@@ -16,7 +16,7 @@ Model::Model(const int inputSize, const int inputChannels, const int outputSize)
|
||||
inputChannels(inputChannels),
|
||||
outputSize(outputSize),
|
||||
layers(std::vector<Layers::SequentialLayer*>()),
|
||||
layerMap(std::unordered_map<std::string, Layers::WeightedLayer*>()) {
|
||||
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
|
||||
inputLayer = new Layers::Input(inputSize * inputSize * inputChannels);
|
||||
outputLayer = new Layers::Output(outputSize);
|
||||
};
|
||||
@@ -26,7 +26,7 @@ Model::Model(const Model& other)
|
||||
inputChannels(other.inputChannels),
|
||||
outputSize(other.outputSize),
|
||||
layers(std::vector<Layers::SequentialLayer*>()),
|
||||
layerMap(std::unordered_map<std::string, Layers::WeightedLayer*>()) {
|
||||
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
|
||||
inputLayer = new Layers::Input(*other.inputLayer);
|
||||
outputLayer = new Layers::Output(*other.outputLayer);
|
||||
}
|
||||
@@ -59,6 +59,10 @@ void Model::addLayer(const std::string& name, Layers::SequentialLayer* layer) {
|
||||
}
|
||||
}
|
||||
|
||||
Layers::SequentialLayer* Model::getLayer(const std::string& name) {
|
||||
return layerMap[name];
|
||||
}
|
||||
|
||||
void Model::loadWeights(const std::string& path) {
|
||||
std::ifstream file(path, std::ios::binary);
|
||||
|
||||
@@ -115,10 +119,18 @@ void Model::loadWeights(const std::string& path) {
|
||||
file.read(reinterpret_cast<char*>(values.data()), tensorInfo.size * sizeof(float));
|
||||
|
||||
if (layerMap.find(tensorInfo.name) != layerMap.end()) {
|
||||
|
||||
Layers::WeightedLayer* wLayer = dynamic_cast<Layers::WeightedLayer*>(layerMap[tensorInfo.name]);
|
||||
|
||||
if (wLayer == nullptr) {
|
||||
std::cerr << "Layer: " << tensorInfo.name << "does not have weights, skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensorInfo.type == TensorType::WEIGHT) {
|
||||
layerMap[tensorInfo.name]->setWeights(values.data());
|
||||
wLayer->setWeights(values.data());
|
||||
} else if (tensorInfo.type == TensorType::BIAS) {
|
||||
layerMap[tensorInfo.name]->setBiases(values.data());
|
||||
wLayer->setBiases(values.data());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user