mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Implement getting layer, weights and biases
This commit is contained in:
@@ -84,11 +84,19 @@ void Conv2d::setWeights(const float* weights_input) {
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getWeights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void Conv2d::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getBiases() {
|
||||
return biases;
|
||||
}
|
||||
|
||||
void Conv2d::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(),
|
||||
|
||||
@@ -98,7 +98,15 @@ void Dense::setWeights(const float* weights_input) {
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> Dense::getWeights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void Dense::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> Dense::getBiases() {
|
||||
return biases;
|
||||
}
|
||||
@@ -16,7 +16,7 @@ Model::Model(const int inputSize, const int inputChannels, const int outputSize)
|
||||
inputChannels(inputChannels),
|
||||
outputSize(outputSize),
|
||||
layers(std::vector<Layers::SequentialLayer*>()),
|
||||
layerMap(std::unordered_map<std::string, Layers::WeightedLayer*>()) {
|
||||
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
|
||||
inputLayer = new Layers::Input(inputSize * inputSize * inputChannels);
|
||||
outputLayer = new Layers::Output(outputSize);
|
||||
};
|
||||
@@ -26,7 +26,7 @@ Model::Model(const Model& other)
|
||||
inputChannels(other.inputChannels),
|
||||
outputSize(other.outputSize),
|
||||
layers(std::vector<Layers::SequentialLayer*>()),
|
||||
layerMap(std::unordered_map<std::string, Layers::WeightedLayer*>()) {
|
||||
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
|
||||
inputLayer = new Layers::Input(*other.inputLayer);
|
||||
outputLayer = new Layers::Output(*other.outputLayer);
|
||||
}
|
||||
@@ -59,6 +59,10 @@ void Model::addLayer(const std::string& name, Layers::SequentialLayer* layer) {
|
||||
}
|
||||
}
|
||||
|
||||
Layers::SequentialLayer* Model::getLayer(const std::string& name) {
|
||||
return layerMap[name];
|
||||
}
|
||||
|
||||
void Model::loadWeights(const std::string& path) {
|
||||
std::ifstream file(path, std::ios::binary);
|
||||
|
||||
@@ -115,10 +119,18 @@ void Model::loadWeights(const std::string& path) {
|
||||
file.read(reinterpret_cast<char*>(values.data()), tensorInfo.size * sizeof(float));
|
||||
|
||||
if (layerMap.find(tensorInfo.name) != layerMap.end()) {
|
||||
|
||||
Layers::WeightedLayer* wLayer = dynamic_cast<Layers::WeightedLayer*>(layerMap[tensorInfo.name]);
|
||||
|
||||
if (wLayer == nullptr) {
|
||||
std::cerr << "Layer: " << tensorInfo.name << "does not have weights, skipping" << std::endl;
|
||||
continue;
|
||||
}
|
||||
|
||||
if (tensorInfo.type == TensorType::WEIGHT) {
|
||||
layerMap[tensorInfo.name]->setWeights(values.data());
|
||||
wLayer->setWeights(values.data());
|
||||
} else if (tensorInfo.type == TensorType::BIAS) {
|
||||
layerMap[tensorInfo.name]->setBiases(values.data());
|
||||
wLayer->setBiases(values.data());
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
Reference in New Issue
Block a user