Implement getting layer, weights and biases

This commit is contained in:
2024-04-16 19:09:41 +02:00
parent f4ae45f867
commit 9fb9d7e8e1
7 changed files with 77 additions and 5 deletions

View File

@@ -84,11 +84,19 @@ void Conv2d::setWeights(const float* weights_input) {
toCuda();
}
std::vector<float> Conv2d::getWeights() {
return weights;
}
void Conv2d::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}
std::vector<float> Conv2d::getBiases() {
return biases;
}
void Conv2d::toCuda() {
CUDA_CHECK(cudaMemcpy(
d_weights, weights.data(),

View File

@@ -98,7 +98,15 @@ void Dense::setWeights(const float* weights_input) {
toCuda();
}
std::vector<float> Dense::getWeights() {
return weights;
}
void Dense::setBiases(const float* biases_input) {
std::copy(biases_input, biases_input + biases.size(), biases.begin());
toCuda();
}
std::vector<float> Dense::getBiases() {
return biases;
}

View File

@@ -16,7 +16,7 @@ Model::Model(const int inputSize, const int inputChannels, const int outputSize)
inputChannels(inputChannels),
outputSize(outputSize),
layers(std::vector<Layers::SequentialLayer*>()),
layerMap(std::unordered_map<std::string, Layers::WeightedLayer*>()) {
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
inputLayer = new Layers::Input(inputSize * inputSize * inputChannels);
outputLayer = new Layers::Output(outputSize);
};
@@ -26,7 +26,7 @@ Model::Model(const Model& other)
inputChannels(other.inputChannels),
outputSize(other.outputSize),
layers(std::vector<Layers::SequentialLayer*>()),
layerMap(std::unordered_map<std::string, Layers::WeightedLayer*>()) {
layerMap(std::unordered_map<std::string, Layers::SequentialLayer*>()) {
inputLayer = new Layers::Input(*other.inputLayer);
outputLayer = new Layers::Output(*other.outputLayer);
}
@@ -59,6 +59,10 @@ void Model::addLayer(const std::string& name, Layers::SequentialLayer* layer) {
}
}
Layers::SequentialLayer* Model::getLayer(const std::string& name) {
return layerMap[name];
}
void Model::loadWeights(const std::string& path) {
std::ifstream file(path, std::ios::binary);
@@ -115,10 +119,18 @@ void Model::loadWeights(const std::string& path) {
file.read(reinterpret_cast<char*>(values.data()), tensorInfo.size * sizeof(float));
if (layerMap.find(tensorInfo.name) != layerMap.end()) {
Layers::WeightedLayer* wLayer = dynamic_cast<Layers::WeightedLayer*>(layerMap[tensorInfo.name]);
if (wLayer == nullptr) {
std::cerr << "Layer: " << tensorInfo.name << "does not have weights, skipping" << std::endl;
continue;
}
if (tensorInfo.type == TensorType::WEIGHT) {
layerMap[tensorInfo.name]->setWeights(values.data());
wLayer->setWeights(values.data());
} else if (tensorInfo.type == TensorType::BIAS) {
layerMap[tensorInfo.name]->setBiases(values.data());
wLayer->setBiases(values.data());
}
}
}