Update activation test

This commit is contained in:
2024-04-21 14:00:43 +02:00
parent 942ee6a32b
commit 9a6152469a
4 changed files with 52 additions and 18 deletions

View File

@@ -1,6 +1,9 @@
import torchvision
import torch
import sys
from torchsummary import summary
sys.path.append('../../tools') # Ugly hack
from utils import export_model_weights, print_model_parameters
@@ -9,5 +12,9 @@ if __name__ == "__main__":
print_model_parameters(alexnet) # print layer names and number of parameters
export_model_weights(alexnet, 'alexnet_weights.bin')
print()
print(alexnet)
if torch.cuda.is_available():
alexnet.cuda()
summary(alexnet, (3, 227, 227))

View File

@@ -17,6 +17,8 @@ Activation::Activation(ActivationType activation, const int length)
d_softmax_sum = nullptr;
CUDA_CHECK(cudaMalloc((void**)&d_softmax_sum, sizeof(float) * length));
std::cout << "Activation: Softmax " << length << std::endl;
}
gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;

View File

@@ -28,7 +28,16 @@ void Utils::max(float* d_vec, float* d_max, const unsigned int length) {
const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
std::cout << "grid_size: " << grid_size << ", length: " << length << std::endl;
CUDA_CHECK(cudaGetLastError());
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(d_vec, d_max, length);
std::cout << "input: " << std::endl;
print_vec(d_vec, length);
std::cout << "max: " << std::endl;
print_vec(d_max, length);
CUDA_CHECK(cudaGetLastError());
int remaining = grid_size;
@@ -46,7 +55,6 @@ void Utils::sum(float* d_vec, float* d_sum, const unsigned int length) {
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
d_vec, d_sum, length
);

View File

@@ -4,26 +4,33 @@
#include <vector>
TEST(ActivationTest, SoftmaxTest1) {
const int inputSize = 5;
cudaError_t cudaStatus;
CUDANet::Layers::Activation activation(
CUDANet::Layers::ActivationType::SOFTMAX, 5
CUDANet::Layers::ActivationType::SOFTMAX, inputSize
);
std::vector<float> input = {0.573f, 0.619f, 0.732f, 0.055f, 0.243f};
float* d_input;
cudaMalloc((void**)&d_input, sizeof(float) * 5);
cudaMemcpy(d_input, input.data(), sizeof(float) * 5, cudaMemcpyHostToDevice);
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * inputSize);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(d_input, input.data(), sizeof(float) * inputSize, cudaMemcpyHostToDevice);
EXPECT_EQ(cudaStatus, cudaSuccess);
activation.activate(d_input);
std::vector<float> output(5);
cudaMemcpy(
output.data(), d_input, sizeof(float) * 5, cudaMemcpyDeviceToHost
cudaStatus = cudaMemcpy(
output.data(), d_input, sizeof(float) * inputSize, cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
float sum = 0.0f;
std::vector<float> expected = {0.22055f, 0.23094f, 0.25856f, 0.13139f, 0.15856f};
for (int i = 0; i < 5; ++i) {
for (int i = 0; i < inputSize; ++i) {
sum += output[i];
EXPECT_NEAR(output[i], expected[i], 1e-5f);
}
@@ -35,32 +42,42 @@ TEST(ActivationTest, SoftmaxTest1) {
}
TEST(ActivationTest, SoftmaxTest2) {
const int inputSize = 6;
cudaError_t cudaStatus;
CUDANet::Layers::Activation activation(
CUDANet::Layers::ActivationType::SOFTMAX, 6
CUDANet::Layers::ActivationType::SOFTMAX, inputSize
);
cudaStatus = cudaGetLastError();
EXPECT_EQ(cudaStatus, cudaSuccess);
std::vector<float> input = {22.496f, 36.9006f, 30.9904f, 28.4213f, 26.4541f, 31.7887f};
float* d_input;
cudaMalloc((void**)&d_input, sizeof(float) * 6);
cudaMemcpy(d_input, input.data(), sizeof(float) * 6, cudaMemcpyHostToDevice);
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * inputSize);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(d_input, input.data(), sizeof(float) * inputSize, cudaMemcpyHostToDevice);
EXPECT_EQ(cudaStatus, cudaSuccess);
activation.activate(d_input);
std::vector<float> output(6);
cudaMemcpy(
output.data(), d_input, sizeof(float) * 6, cudaMemcpyDeviceToHost
std::vector<float> output(inputSize);
cudaStatus = cudaMemcpy(
output.data(), d_input, sizeof(float) * inputSize, cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
float sum = 0.0f;
std::vector<float> expected = {0.0f, 0.99111f, 0.00269f, 0.00021f, 3e-05f, 0.00597f};
for (int i = 0; i < 5; ++i) {
for (int i = 0; i < inputSize; ++i) {
sum += output[i];
EXPECT_NEAR(output[i], expected[i], 1e-5f);
}
EXPECT_NEAR(sum, 1.0f, 1e-5f);
EXPECT_NEAR(sum, 1.0f, 1e-2f);
// Cleanup
cudaFree(d_input);
cudaDeviceReset();
}