Add more softmax tests

This commit is contained in:
2024-03-22 22:32:08 +01:00
parent 9482d7bc43
commit 7bc329a043
4 changed files with 96 additions and 11 deletions

View File

@@ -1,5 +1,3 @@
#include <cmath>
#include "activation_functions.cuh"
#include "cuda_helper.cuh"
@@ -40,7 +38,7 @@ __global__ void Kernels::softmax_exp(
int tid = blockDim.x * blockIdx.x + threadIdx.x;
for (int i = tid; i < len; i += stride) {
dst[i] = std::exp(src[i]);
dst[i] = expf(src[i]);
}
}
@@ -50,7 +48,7 @@ __global__ void Kernels::softmax_sum(
const unsigned int w
) {
__shared__ float partial_sum[BLOCK_SIZE];
int i = blockIdx.x * blockDim.x * 2 + threadIdx.x;
int i = blockIdx.x * blockDim.x * 2 + threadIdx.x;
partial_sum[threadIdx.x] = d_vector[i] + d_vector[i + blockDim.x];
__syncthreads();
@@ -69,7 +67,7 @@ __global__ void Kernels::softmax_sum(
__global__ void Kernels::softmax_div(
const float* __restrict__ src,
float* __restrict__ dst,
const float* __restrict__ sum,
const float* __restrict__ sum,
const unsigned int len
) {
int stride = gridDim.x * blockDim.x;

View File

@@ -41,7 +41,7 @@ void Activation::activate(float* __restrict__ d_input) {
d_input, d_input, length
);
Kernels::softmax_sum<<<gridSize / 2, BLOCK_SIZE>>>(
Kernels::softmax_sum<<<gridSize, BLOCK_SIZE>>>(
d_input, d_softmax_sum, length
);

View File

@@ -5,8 +5,7 @@
#include "activation_functions.cuh"
TEST(ActivationsTest, SigmoidSanityCheck) {
TEST(ActivationFunctionsTest, SigmoidSanityCheck) {
cudaError_t cudaStatus;
float input[3] = {-100.0f, 0.0f, 100.0f};
@@ -22,7 +21,8 @@ TEST(ActivationsTest, SigmoidSanityCheck) {
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * 3);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMemcpy(d_input, input, sizeof(float) * 3, cudaMemcpyHostToDevice);
cudaStatus =
cudaMemcpy(d_input, input, sizeof(float) * 3, cudaMemcpyHostToDevice);
EXPECT_EQ(cudaStatus, cudaSuccess);
CUDANet::Kernels::sigmoid<<<1, 3>>>(d_input, d_output, 3);
@@ -31,7 +31,9 @@ TEST(ActivationsTest, SigmoidSanityCheck) {
std::vector<float> output(3);
cudaStatus = cudaMemcpy(output.data(), d_output, sizeof(float) * 3, cudaMemcpyDeviceToHost);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * 3, cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < 3; i++) {
@@ -40,4 +42,59 @@ TEST(ActivationsTest, SigmoidSanityCheck) {
cudaFree(d_input);
cudaFree(d_output);
}
TEST(ActivationFunctionsTest, SoftmaxExpTest) {
cudaError_t cudaStatus;
float input[6] = {22.496f, 36.9006f, 30.9904f,
28.4213f, 26.4541f, 31.7887f};
std::vector<float> expected = {5886928896.0f, 1.06102872080384e+16f,
28771323215872.0f, 2204012904448.0f,
308226162688.0f, 63922983927808.0f};
float* d_input;
float* d_output;
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 6);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus = cudaMalloc((void**)&d_output, sizeof(float) * 6);
EXPECT_EQ(cudaStatus, cudaSuccess);
cudaStatus =
cudaMemcpy(d_input, input, sizeof(float) * 6, cudaMemcpyHostToDevice);
EXPECT_EQ(cudaStatus, cudaSuccess);
CUDANet::Kernels::softmax_exp<<<1, 6>>>(d_input, d_output, 6);
cudaStatus = cudaDeviceSynchronize();
EXPECT_EQ(cudaStatus, cudaSuccess);
std::vector<float> output(6);
cudaStatus = cudaMemcpy(
output.data(), d_output, sizeof(float) * 6, cudaMemcpyDeviceToHost
);
EXPECT_EQ(cudaStatus, cudaSuccess);
for (int i = 0; i < 6; i++) {
EXPECT_NEAR(expected[i], output[i], 1e7);
}
cudaFree(d_input);
cudaFree(d_output);
}
TEST(ActivationFunctionsTest, SoftmaxSumTest) {
cudaError_t cudaStatus;
std::vector<float> input = {5886928896.0f, 1.06102872080384e+16f,
28771323215872.0f, 2204012904448.0f,
308226162688.0f, 63922983927808.0f};
float* d_input;
cudaStatus = cudaMalloc((void**)&d_input, sizeof(float) * 6);
EXPECT_EQ(cudaStatus, cudaSuccess);
}

View File

@@ -3,7 +3,7 @@
#include <cuda_runtime.h>
#include <vector>
TEST(ActivationTest, SoftmaxTest) {
TEST(ActivationTest, SoftmaxTest1) {
CUDANet::Layers::Activation activation(
CUDANet::Layers::ActivationType::SOFTMAX, 5
);
@@ -30,5 +30,35 @@ TEST(ActivationTest, SoftmaxTest) {
EXPECT_NEAR(sum, 1.0f, 1e-5f);
cudaFree(d_input);
}
TEST(ActivationTest, SoftmaxTest2) {
CUDANet::Layers::Activation activation(
CUDANet::Layers::ActivationType::SOFTMAX, 6
);
std::vector<float> input = {22.496f, 36.9006f, 30.9904f, 28.4213f, 26.4541f, 31.7887f};
float* d_input;
cudaMalloc((void**)&d_input, sizeof(float) * 6);
cudaMemcpy(d_input, input.data(), sizeof(float) * 6, cudaMemcpyHostToDevice);
activation.activate(d_input);
std::vector<float> output(6);
cudaMemcpy(
output.data(), d_input, sizeof(float) * 6, cudaMemcpyDeviceToHost
);
float sum = 0.0f;
std::vector<float> expected = {0.0f, 0.99111f, 0.00269f, 0.00021f, 3e-05f, 0.00597f};
for (int i = 0; i < 5; ++i) {
sum += output[i];
EXPECT_NEAR(output[i], expected[i], 1e-5f);
}
EXPECT_NEAR(sum, 1.0f, 1e-5f);
cudaFree(d_input);
}