mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Update inception v3 readme
This commit is contained in:
43
examples/inception_v3/README.md
Normal file
43
examples/inception_v3/README.md
Normal file
@@ -0,0 +1,43 @@
|
||||
# Inception v3
|
||||
|
||||
Inception v3 Inference on CUDANet
|
||||
|
||||
## Usage
|
||||
|
||||
1. Export pytorch Inception v3 weights pretrained on ImageNet (requires pytorch and torchvision):
|
||||
|
||||
```sh
|
||||
python inception_v3.py
|
||||
```
|
||||
|
||||
2. Follow the instructions from the repository root to build the CUDANet library.
|
||||
|
||||
3. Build Inception v3 (requires [OpenCV](https://opencv.org/) for image loading and preprocessing):
|
||||
|
||||
```sh
|
||||
mkdir build
|
||||
cd build
|
||||
cmake -S ..
|
||||
make
|
||||
```
|
||||
|
||||
4. (Optional) Run tests
|
||||
|
||||
Generate test input/output and resources by running `inception_blocks.py` in the `test` folder
|
||||
|
||||
Build and run tests (requires [Google Test](https://github.com/google/googletest))
|
||||
|
||||
```sh
|
||||
cd build
|
||||
make test_inception_v3
|
||||
./tests/test_inception_v3
|
||||
```
|
||||
|
||||
5. Run Inception v3 inference:
|
||||
```sh
|
||||
inception_v3 ../inception_v3_weights.bin ../image.jpg
|
||||
```
|
||||
|
||||
## Note on Preprocessing
|
||||
|
||||
The image preprocessing in this implementation uses OpenCV, which may produce slightly different results compared to PyTorch's Pillow-based preprocessing due to differences in interpolation methods during resizing.
|
||||
Reference in New Issue
Block a user