mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-05 17:34:21 +00:00
Migrate conv2d layer
This commit is contained in:
73
src/backends/cuda/layers/conv2d.cu
Normal file
73
src/backends/cuda/layers/conv2d.cu
Normal file
@@ -0,0 +1,73 @@
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "conv2d.hpp"
|
||||
#include "convolution.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "layer.hpp"
|
||||
#include "matmul.cuh"
|
||||
#include "vector.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
void Conv2d::initCUDA() {
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output,
|
||||
sizeof(float) * outputSize.first * outputSize.second * numFilters
|
||||
));
|
||||
|
||||
d_weights = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_weights, sizeof(float) * kernelSize.first *
|
||||
kernelSize.second * inputChannels * numFilters
|
||||
));
|
||||
|
||||
d_biases = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_biases, sizeof(float) * numFilters));
|
||||
}
|
||||
|
||||
void Conv2d::delCUDA() {
|
||||
cudaFree(d_output);
|
||||
cudaFree(d_weights);
|
||||
cudaFree(d_biases);
|
||||
}
|
||||
|
||||
void Conv2d::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(),
|
||||
sizeof(float) * kernelSize.first * kernelSize.second * inputChannels *
|
||||
numFilters,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_biases, biases.data(), sizeof(float) * numFilters,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
}
|
||||
|
||||
float* Conv2d::forwardCUDA(const float* d_input) {
|
||||
// Convolve
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(outputSize.first + block.x - 1) / block.x,
|
||||
(outputSize.second + block.y - 1) / block.y,
|
||||
(numFilters + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
CUDANet::Utils::clear(d_output, outputSize.first * outputSize.second * numFilters);
|
||||
|
||||
Kernels::convolution<<<grid, block>>>(
|
||||
d_input, d_weights, d_biases, d_output, inputSize, inputChannels,
|
||||
paddingSize, kernelSize, stride, numFilters, outputSize
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Apply activation
|
||||
activation->activate(d_output);
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
111
src/layers/conv2d.cpp
Normal file
111
src/layers/conv2d.cpp
Normal file
@@ -0,0 +1,111 @@
|
||||
#include <stdexcept>
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "conv2d.hpp"
|
||||
#include "layer.hpp"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Conv2d::Conv2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
shape2d kernelSize,
|
||||
shape2d stride,
|
||||
int numFilters,
|
||||
shape2d paddingSize,
|
||||
ActivationType activationType
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
inputChannels(inputChannels),
|
||||
kernelSize(kernelSize),
|
||||
stride(stride),
|
||||
numFilters(numFilters),
|
||||
paddingSize(paddingSize) {
|
||||
outputSize = {
|
||||
(inputSize.first - kernelSize.first + 2 * paddingSize.first) /
|
||||
stride.first +
|
||||
1,
|
||||
(inputSize.second - kernelSize.second + 2 * paddingSize.second) /
|
||||
stride.second +
|
||||
1
|
||||
};
|
||||
|
||||
activation = new Activation(
|
||||
activationType, outputSize.first * outputSize.second * numFilters
|
||||
);
|
||||
|
||||
weights.resize(
|
||||
kernelSize.first * kernelSize.second * inputChannels * numFilters
|
||||
);
|
||||
initializeWeights();
|
||||
|
||||
biases.resize(numFilters);
|
||||
initializeBiases();
|
||||
|
||||
#ifdef USE_CUDA
|
||||
initCUDA();
|
||||
toCuda();
|
||||
#endif
|
||||
}
|
||||
|
||||
Conv2d::~Conv2d() {
|
||||
#ifdef USE_CUDA
|
||||
delCUDA();
|
||||
#endif
|
||||
delete activation;
|
||||
}
|
||||
|
||||
void Conv2d::initializeWeights() {
|
||||
std::fill(weights.begin(), weights.end(), 0.0f);
|
||||
}
|
||||
|
||||
void Conv2d::initializeBiases() {
|
||||
std::fill(biases.begin(), biases.end(), 0.0f);
|
||||
}
|
||||
|
||||
void Conv2d::setWeights(const float* weights_input) {
|
||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getWeights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void Conv2d::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
#ifdef USE_CUDA
|
||||
toCuda();
|
||||
#endif
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getBiases() {
|
||||
return biases;
|
||||
}
|
||||
|
||||
float* Conv2d::forwardCPU(const float* input) {
|
||||
throw std::logic_error("Not implemented");
|
||||
}
|
||||
|
||||
float* Conv2d::forward(const float* input) {
|
||||
#ifdef USE_CUDA
|
||||
return forwardCUDA(input);
|
||||
#else
|
||||
return forwardCPU(input);
|
||||
#endif
|
||||
}
|
||||
|
||||
int Conv2d::getOutputSize() {
|
||||
return outputSize.first * outputSize.second * numFilters;
|
||||
}
|
||||
|
||||
int Conv2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
shape2d Conv2d::getOutputDims() {
|
||||
return outputSize;
|
||||
}
|
||||
@@ -1,144 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "activation.hpp"
|
||||
#include "conv2d.cuh"
|
||||
#include "convolution.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
#include "layer.hpp"
|
||||
#include "matmul.cuh"
|
||||
#include "vector.cuh"
|
||||
|
||||
using namespace CUDANet::Layers;
|
||||
|
||||
Conv2d::Conv2d(
|
||||
shape2d inputSize,
|
||||
int inputChannels,
|
||||
shape2d kernelSize,
|
||||
shape2d stride,
|
||||
int numFilters,
|
||||
shape2d paddingSize,
|
||||
ActivationType activationType
|
||||
)
|
||||
: inputSize(inputSize),
|
||||
inputChannels(inputChannels),
|
||||
kernelSize(kernelSize),
|
||||
stride(stride),
|
||||
numFilters(numFilters),
|
||||
paddingSize(paddingSize) {
|
||||
|
||||
outputSize = {
|
||||
(inputSize.first - kernelSize.first + 2 * paddingSize.first) /
|
||||
stride.first + 1,
|
||||
(inputSize.second - kernelSize.second + 2 * paddingSize.second) /
|
||||
stride.second + 1
|
||||
};
|
||||
|
||||
activation =
|
||||
new Activation(activationType, outputSize.first * outputSize.second * numFilters);
|
||||
|
||||
d_output = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_output, sizeof(float) * outputSize.first * outputSize.second * numFilters
|
||||
));
|
||||
|
||||
weights.resize(kernelSize.first * kernelSize.second * inputChannels * numFilters);
|
||||
initializeWeights();
|
||||
|
||||
d_weights = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_weights,
|
||||
sizeof(float) * kernelSize.first * kernelSize.second * inputChannels * numFilters
|
||||
));
|
||||
|
||||
biases.resize(numFilters);
|
||||
initializeBiases();
|
||||
|
||||
d_biases = nullptr;
|
||||
CUDA_CHECK(cudaMalloc((void**)&d_biases, sizeof(float) * numFilters));
|
||||
|
||||
toCuda();
|
||||
}
|
||||
|
||||
Conv2d::~Conv2d() {
|
||||
cudaFree(d_output);
|
||||
cudaFree(d_weights);
|
||||
cudaFree(d_biases);
|
||||
delete activation;
|
||||
}
|
||||
|
||||
void Conv2d::initializeWeights() {
|
||||
std::fill(weights.begin(), weights.end(), 0.0f);
|
||||
}
|
||||
|
||||
void Conv2d::initializeBiases() {
|
||||
std::fill(biases.begin(), biases.end(), 0.0f);
|
||||
}
|
||||
|
||||
void Conv2d::setWeights(const float* weights_input) {
|
||||
std::copy(weights_input, weights_input + weights.size(), weights.begin());
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getWeights() {
|
||||
return weights;
|
||||
}
|
||||
|
||||
void Conv2d::setBiases(const float* biases_input) {
|
||||
std::copy(biases_input, biases_input + biases.size(), biases.begin());
|
||||
toCuda();
|
||||
}
|
||||
|
||||
std::vector<float> Conv2d::getBiases() {
|
||||
return biases;
|
||||
}
|
||||
|
||||
void Conv2d::toCuda() {
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_weights, weights.data(),
|
||||
sizeof(float) * kernelSize.first * kernelSize.second * inputChannels * numFilters,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
d_biases, biases.data(), sizeof(float) * numFilters,
|
||||
cudaMemcpyHostToDevice
|
||||
));
|
||||
}
|
||||
|
||||
float* Conv2d::forward(const float* d_input) {
|
||||
// Convolve
|
||||
dim3 block(8, 8, 8);
|
||||
dim3 grid(
|
||||
(outputSize.first + block.x - 1) / block.x,
|
||||
(outputSize.second + block.y - 1) / block.y,
|
||||
(numFilters + block.z - 1) / block.z
|
||||
);
|
||||
|
||||
CUDANet::Utils::clear(d_output, outputSize.first * outputSize.second * numFilters);
|
||||
|
||||
Kernels::convolution<<<grid, block>>>(
|
||||
d_input, d_weights, d_biases, d_output, inputSize, inputChannels,
|
||||
paddingSize, kernelSize, stride, numFilters, outputSize
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Apply activation
|
||||
activation->activate(d_output);
|
||||
|
||||
CUDA_CHECK(cudaDeviceSynchronize());
|
||||
|
||||
return d_output;
|
||||
}
|
||||
|
||||
int Conv2d::getOutputSize() {
|
||||
return outputSize.first * outputSize.second * numFilters;
|
||||
}
|
||||
|
||||
int Conv2d::getInputSize() {
|
||||
return inputSize.first * inputSize.second * inputChannels;
|
||||
}
|
||||
|
||||
shape2d Conv2d::getOutputDims() {
|
||||
return outputSize;
|
||||
}
|
||||
Reference in New Issue
Block a user