mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-08 10:44:22 +00:00
Add support for non square matrices
This commit is contained in:
@@ -9,19 +9,19 @@ __global__ void Kernels::convolution(
|
||||
const float* __restrict__ d_kernel,
|
||||
const float* __restrict__ d_bias,
|
||||
float* __restrict__ d_output,
|
||||
const int inputSize,
|
||||
const int nChannels,
|
||||
const int paddingSize,
|
||||
const int kernelSize,
|
||||
const int stride,
|
||||
const int nFilters,
|
||||
const int outputSize
|
||||
const dim2d inputSize,
|
||||
const int nChannels,
|
||||
const dim2d paddingSize,
|
||||
const dim2d kernelSize,
|
||||
const dim2d stride,
|
||||
const int nFilters,
|
||||
const dim2d outputSize
|
||||
) {
|
||||
int j = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
int i = blockDim.y * blockIdx.y + threadIdx.y;
|
||||
int f = blockDim.z * blockIdx.z + threadIdx.z;
|
||||
|
||||
if (i >= outputSize || j >= outputSize || f >= nFilters) {
|
||||
if (i >= outputSize.first || j >= outputSize.second || f >= nFilters) {
|
||||
return;
|
||||
}
|
||||
|
||||
@@ -29,28 +29,32 @@ __global__ void Kernels::convolution(
|
||||
|
||||
// Iterate over kernel and input matrix
|
||||
for (int c = 0; c < nChannels; c++) {
|
||||
for (int k = 0; k < kernelSize; k++) {
|
||||
for (int l = 0; l < kernelSize; l++) {
|
||||
|
||||
for (int k = 0; k < kernelSize.first; k++) {
|
||||
for (int l = 0; l < kernelSize.second; l++) {
|
||||
// if i, j is in the padding region
|
||||
if (i * stride + k < paddingSize ||
|
||||
i * stride + k >= (inputSize + paddingSize) ||
|
||||
j * stride + l < paddingSize ||
|
||||
j * stride + l >= (inputSize + paddingSize)) {
|
||||
if (i * stride.first + k < paddingSize.first ||
|
||||
i * stride.first + k >=
|
||||
(inputSize.first + paddingSize.first) ||
|
||||
j * stride.second + l < paddingSize.second ||
|
||||
j * stride.second + l >=
|
||||
(inputSize.second + paddingSize.second)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int kernelIndex = f * kernelSize * kernelSize * nChannels +
|
||||
c * kernelSize * kernelSize + k * kernelSize +
|
||||
l;
|
||||
int inputIndex = c * inputSize * inputSize +
|
||||
(i * stride + k - paddingSize) * inputSize +
|
||||
(j * stride + l - paddingSize);
|
||||
int kernelIndex =
|
||||
f * kernelSize.first * kernelSize.second * nChannels +
|
||||
c * kernelSize.first * kernelSize.second +
|
||||
k * kernelSize.second + l;
|
||||
int inputIndex = c * inputSize.first * inputSize.second +
|
||||
(i * stride.first + k - paddingSize.first) *
|
||||
inputSize.second +
|
||||
(j * stride.second + l - paddingSize.second);
|
||||
|
||||
sum += d_kernel[kernelIndex] * d_input[inputIndex];
|
||||
}
|
||||
}
|
||||
}
|
||||
|
||||
d_output[f * outputSize * outputSize + i * outputSize + j] = sum + d_bias[f];
|
||||
d_output[f * outputSize.first * outputSize.second + i * outputSize.second + j] =
|
||||
sum + d_bias[f];
|
||||
}
|
||||
Reference in New Issue
Block a user