mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 01:34:22 +00:00
Move softmax partial kernels to matmul
This commit is contained in:
@@ -28,51 +28,3 @@ __global__ void Kernels::relu(
|
||||
dst[i] = src[i] < 0.0 ? 0.0 : src[i];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::softmax_exp(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const unsigned int len
|
||||
) {
|
||||
int stride = gridDim.x * blockDim.x;
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
for (int i = tid; i < len; i += stride) {
|
||||
dst[i] = expf(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::softmax_sum(
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output
|
||||
) {
|
||||
__shared__ float partial_sum[BLOCK_SIZE];
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
partial_sum[threadIdx.x] = d_vector[i];
|
||||
__syncthreads();
|
||||
|
||||
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
|
||||
if (threadIdx.x < s) {
|
||||
partial_sum[threadIdx.x] += partial_sum[threadIdx.x + s];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
d_output[blockIdx.x] = partial_sum[0];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::softmax_div(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const float* __restrict__ sum,
|
||||
const unsigned int len
|
||||
) {
|
||||
int stride = gridDim.x * blockDim.x;
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
for (int i = tid; i < len; i += stride) {
|
||||
dst[i] = src[i] / sum[0];
|
||||
}
|
||||
}
|
||||
@@ -3,6 +3,7 @@
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
|
||||
__global__ void Kernels::mat_vec_mul(
|
||||
const float* __restrict__ d_matrix,
|
||||
const float* __restrict__ d_vector,
|
||||
@@ -37,6 +38,7 @@ __global__ void Kernels::mat_vec_mul(
|
||||
d_output[tid] = temp;
|
||||
}
|
||||
|
||||
|
||||
__global__ void Kernels::vec_vec_add(
|
||||
const float* __restrict__ d_vector1,
|
||||
const float* __restrict__ d_vector2,
|
||||
@@ -50,14 +52,75 @@ __global__ void Kernels::vec_vec_add(
|
||||
d_output[tid] = d_vector1[tid] + d_vector2[tid];
|
||||
}
|
||||
|
||||
|
||||
__global__ void Kernels::vec_scalar_sub(
|
||||
const float* __restrict__ d_src,
|
||||
float* __restrict__ d_out,
|
||||
const float* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= len) {
|
||||
return;
|
||||
}
|
||||
d_out[tid] = d_src[tid] - d_scalar[0];
|
||||
}
|
||||
|
||||
|
||||
__global__ void Kernels::vec_scalar_div(
|
||||
const float* __restrict__ d_src,
|
||||
float* __restrict__ d_out,
|
||||
const float* __restrict__ d_scalar,
|
||||
const unsigned int len
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= len) {
|
||||
return;
|
||||
}
|
||||
d_out[tid] = d_src[tid] / d_scalar[0];
|
||||
}
|
||||
|
||||
|
||||
__global__ void Kernels::vec_exp(
|
||||
const float* __restrict__ src,
|
||||
float* __restrict__ dst,
|
||||
const unsigned int len
|
||||
) {
|
||||
int stride = gridDim.x * blockDim.x;
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
for (int i = tid; i < len; i += stride) {
|
||||
dst[i] = expf(src[i]);
|
||||
}
|
||||
}
|
||||
|
||||
|
||||
__global__ void Kernels::clear(
|
||||
float* __restrict__ d_vector,
|
||||
const unsigned int w
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= w) {
|
||||
return;
|
||||
}
|
||||
d_vector[tid] = 0.0f;
|
||||
}
|
||||
|
||||
|
||||
__global__ void Kernels::max_reduce(
|
||||
const float* __restrict__ d_vector,
|
||||
float* __restrict__ d_output
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int len
|
||||
) {
|
||||
__shared__ float shared_max[BLOCK_SIZE];
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
shared_max[threadIdx.x] = d_vector[i];
|
||||
if (i < len) {
|
||||
shared_max[threadIdx.x] = d_vector[i];
|
||||
} else {
|
||||
shared_max[threadIdx.x] = -INFINITY;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
|
||||
@@ -72,26 +135,30 @@ __global__ void Kernels::max_reduce(
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void Kernels::vec_scalar_sub(
|
||||
__global__ void Kernels::sum_reduce(
|
||||
const float* __restrict__ d_vector,
|
||||
const float* __restrict__ d_scalar,
|
||||
float* __restrict__ d_output,
|
||||
const unsigned int w
|
||||
const unsigned int len
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= w) {
|
||||
return;
|
||||
}
|
||||
d_output[tid] = d_vector[tid] - d_scalar[0];
|
||||
}
|
||||
__shared__ float partial_sum[BLOCK_SIZE];
|
||||
int i = blockIdx.x * blockDim.x + threadIdx.x;
|
||||
|
||||
__global__ void Kernels::clear(
|
||||
float* __restrict__ d_vector,
|
||||
const unsigned int w
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
if (tid >= w) {
|
||||
return;
|
||||
if (i < len) {
|
||||
partial_sum[threadIdx.x] = d_vector[i];
|
||||
} else {
|
||||
partial_sum[threadIdx.x] = 0.0f;
|
||||
}
|
||||
|
||||
__syncthreads();
|
||||
|
||||
for (int s = blockDim.x / 2; s > 0; s >>= 1) {
|
||||
if (threadIdx.x < s) {
|
||||
partial_sum[threadIdx.x] += partial_sum[threadIdx.x + s];
|
||||
}
|
||||
__syncthreads();
|
||||
}
|
||||
|
||||
if (threadIdx.x == 0) {
|
||||
d_output[blockIdx.x] = partial_sum[0];
|
||||
}
|
||||
d_vector[tid] = 0.0f;
|
||||
}
|
||||
Reference in New Issue
Block a user