mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-11-06 09:44:28 +00:00
Combine padding and conv kernel
This commit is contained in:
@@ -2,83 +2,6 @@
|
||||
|
||||
#include "convolution.cuh"
|
||||
|
||||
/*
|
||||
Pads matrix width x height x n_channels to width + 2 * padding x height + 2 *
|
||||
padding x n_channels Matrix is represented as a pointer to a vector
|
||||
|
||||
For example:
|
||||
|
||||
w = 2
|
||||
h = 3
|
||||
n = 2
|
||||
p = 1
|
||||
|
||||
Channel 0:
|
||||
0 1
|
||||
2 3
|
||||
4 5
|
||||
Channel 1:
|
||||
6 7
|
||||
8 9
|
||||
10 11
|
||||
|
||||
Is represented as:
|
||||
|
||||
0 1 2 3 4 5 6 7 8 9 10 11
|
||||
|
||||
Padded result (as a continuous vector):
|
||||
|
||||
0.0f, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, 1.0f, 0.0f,
|
||||
0.0f, 2.0f, 3.0f, 0.0f,
|
||||
0.0f, 4.0f, 5.0f, 0.0f,
|
||||
0.0f, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, 0.0f, 0.0f, 0.0f,
|
||||
0.0f, 6.0f, 7.0f, 0.0f,
|
||||
0.0f, 8.0f, 9.0f, 0.0f,
|
||||
9.0f, 10.0f, 11.0f, 0.0f,
|
||||
0.0f, 0.0f, 0.0f, 0.0f
|
||||
|
||||
Args:
|
||||
d_input: Pointer to input vector representing matrix
|
||||
d_padded: Pointer to output vector representing padded matrix (needs to be
|
||||
pre-allocated)
|
||||
w: Width of input matrix
|
||||
h: Height of input matrix
|
||||
n: Number of channels in input matrix
|
||||
p: Padding
|
||||
*/
|
||||
__global__ void CUDANet::Kernels::padding(
|
||||
const float* __restrict__ d_input,
|
||||
float* __restrict__ d_padded,
|
||||
const unsigned int w,
|
||||
const unsigned int h,
|
||||
const unsigned int n,
|
||||
const unsigned int p
|
||||
) {
|
||||
int tid = blockDim.x * blockIdx.x + threadIdx.x;
|
||||
|
||||
if (tid >= (w + 2 * p) * (h + 2 * p) * n) {
|
||||
return;
|
||||
}
|
||||
|
||||
int idx = tid;
|
||||
|
||||
// unravel index into padded matrix
|
||||
int i_n = idx / ((w + 2 * p) * (h + 2 * p));
|
||||
int i_h = idx % ((w + 2 * p) * (h + 2 * p)) / (w + 2 * p);
|
||||
int i_w = idx % (w + 2 * p);
|
||||
|
||||
// if i is in the padding region
|
||||
if (i_w < p || i_w >= (w + p) || i_h < p || i_h >= (h + p)) {
|
||||
d_padded[tid] = 0.0f;
|
||||
} else {
|
||||
// Get index into input vector
|
||||
int i_orig = i_n * w * h + (i_h - p) * w + (i_w - p);
|
||||
d_padded[tid] = d_input[i_orig];
|
||||
}
|
||||
}
|
||||
|
||||
__global__ void CUDANet::Kernels::convolution(
|
||||
const float* __restrict__ d_input,
|
||||
const float* __restrict__ d_kernel,
|
||||
@@ -108,12 +31,21 @@ __global__ void CUDANet::Kernels::convolution(
|
||||
for (int c = 0; c < nChannels; c++) {
|
||||
for (int k = 0; k < kernelSize; k++) {
|
||||
for (int l = 0; l < kernelSize; l++) {
|
||||
|
||||
// if i, j is in the padding region
|
||||
if (i * stride + k < paddingSize ||
|
||||
i * stride + k >= (inputSize + paddingSize) ||
|
||||
j * stride + l < paddingSize ||
|
||||
j * stride + l >= (inputSize + paddingSize)) {
|
||||
continue;
|
||||
}
|
||||
|
||||
int kernelIndex = f * kernelSize * kernelSize * nChannels +
|
||||
c * kernelSize * kernelSize + k * kernelSize +
|
||||
l;
|
||||
int inputIndex = c * inputSize * inputSize +
|
||||
(i * stride + k) * inputSize +
|
||||
(j * stride + l);
|
||||
(i * stride + k - paddingSize) * inputSize +
|
||||
(j * stride + l - paddingSize);
|
||||
|
||||
sum += d_kernel[kernelIndex] * d_input[inputIndex];
|
||||
}
|
||||
|
||||
@@ -23,6 +23,7 @@ Layers::Conv2d::Conv2d(
|
||||
kernelSize(kernelSize),
|
||||
stride(stride),
|
||||
numFilters(numFilters) {
|
||||
|
||||
switch (padding) {
|
||||
case SAME:
|
||||
outputSize = inputSize;
|
||||
@@ -64,12 +65,6 @@ Layers::Conv2d::Conv2d(
|
||||
(void**)&d_biases, sizeof(float) * outputSize * outputSize * numFilters
|
||||
));
|
||||
|
||||
d_padded = nullptr;
|
||||
CUDA_CHECK(cudaMalloc(
|
||||
(void**)&d_padded, sizeof(float) * (inputSize + 2 * paddingSize) *
|
||||
(inputSize + 2 * paddingSize) * inputChannels
|
||||
));
|
||||
|
||||
toCuda();
|
||||
}
|
||||
|
||||
@@ -77,7 +72,6 @@ Layers::Conv2d::~Conv2d() {
|
||||
cudaFree(d_output);
|
||||
cudaFree(d_weights);
|
||||
cudaFree(d_biases);
|
||||
cudaFree(d_padded);
|
||||
}
|
||||
|
||||
void Layers::Conv2d::initializeWeights() {
|
||||
@@ -113,18 +107,10 @@ void Layers::Conv2d::toCuda() {
|
||||
}
|
||||
|
||||
float* Layers::Conv2d::forward(const float* d_input) {
|
||||
// Pad input
|
||||
int THREADS_PER_BLOCK = (inputSize + 2 * paddingSize) *
|
||||
(inputSize + 2 * paddingSize) * inputChannels;
|
||||
|
||||
Kernels::padding<<<1, THREADS_PER_BLOCK>>>(
|
||||
d_input, d_padded, inputSize, inputSize, inputChannels, paddingSize
|
||||
);
|
||||
|
||||
// Convolve
|
||||
THREADS_PER_BLOCK = outputSize * outputSize * numFilters;
|
||||
int THREADS_PER_BLOCK = outputSize * outputSize * numFilters;
|
||||
Kernels::convolution<<<1, THREADS_PER_BLOCK>>>(
|
||||
d_padded, d_weights, d_output, inputSize + 2 * paddingSize, inputChannels, paddingSize,
|
||||
d_input, d_weights, d_output, inputSize, inputChannels, paddingSize,
|
||||
kernelSize, stride, numFilters, outputSize
|
||||
);
|
||||
|
||||
|
||||
Reference in New Issue
Block a user