mirror of
https://github.com/lordmathis/CUDANet.git
synced 2025-12-23 14:54:28 +00:00
WIP Migrate vector utils to Tesnor
This commit is contained in:
@@ -16,15 +16,6 @@ void CUDABackend::deallocate(void* ptr) {
|
||||
CUDA_CHECK(cudaFree(ptr));
|
||||
}
|
||||
|
||||
// void CUDABackend::copyToDevice(void* devicePtr, const void* hostPtr, size_t bytes) {
|
||||
// CUDA_CHECK(cudaMemcpy(devicePtr, hostPtr, bytes, cudaMemcpyHostToDevice));
|
||||
// CUDA_CHECK(cudaDeviceSynchronize());
|
||||
// }
|
||||
|
||||
// void CUDABackend::copyToHost(void* hostPtr, const void* devicePtr, size_t bytes) {
|
||||
// CUDA_CHECK(cudaMemcpy(hostPtr, devicePtr, bytes, cudaMemcpyDeviceToHost));
|
||||
// CUDA_CHECK(cudaDeviceSynchronize());
|
||||
// }
|
||||
|
||||
void CUDABackend::relu(Tensor &tensor) {
|
||||
int gridSize = (tensor.numel() + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
65
src/backends/cuda/tensor_ops.cu
Normal file
65
src/backends/cuda/tensor_ops.cu
Normal file
@@ -0,0 +1,65 @@
|
||||
#include <iostream>
|
||||
|
||||
#include "backend/backend.hpp"
|
||||
#include "backend/cuda.cuh"
|
||||
#include "utils/cuda_helper.cuh"
|
||||
#include "kernels/matmul.cuh"
|
||||
|
||||
using namespace CUDANet::Backend;
|
||||
|
||||
void CUDABackend::print(const CUDANet::Backend::Tensor &input) {
|
||||
auto length = input.numel();
|
||||
std::vector<float> h_vec(input.numel());
|
||||
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
h_vec.data(), input.data<float>(), sizeof(float) * length, cudaMemcpyDeviceToHost
|
||||
));
|
||||
|
||||
for (int i = 0; i < length; ++i) {
|
||||
std::cout << h_vec[i] << ", ";
|
||||
}
|
||||
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
void CUDABackend::clear(CUDANet::Backend::Tensor &input) {
|
||||
CUDA_CHECK(cudaMemset(input.data<float>(), 0, sizeof(float) * input.numel()));
|
||||
}
|
||||
|
||||
void CUDABackend::sum(const CUDANet::Backend::Tensor &input, CUDANet::Backend::Tensor &sum) {
|
||||
auto length = input.numel();
|
||||
const int gridSize = ( + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
|
||||
input.data<float>(), sum.data<float>(), length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
int remaining = gridSize;
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(sum.data<float>(), sum.data<float>(), remaining);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void CUDABackend::max(const CUDANet::Backend::Tensor &input, CUDANet::Backend::Tensor &max) {
|
||||
auto length = input.numel();
|
||||
const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(input.data<float>(), max.data<float>(), length);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
int remaining = grid_size;
|
||||
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(max.data<float>(), max.data<float>(), remaining);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
}
|
||||
@@ -1,107 +0,0 @@
|
||||
#include <iostream>
|
||||
#include <vector>
|
||||
|
||||
#include "vector.cuh"
|
||||
#include "matmul.cuh"
|
||||
#include "cuda_helper.cuh"
|
||||
|
||||
using namespace CUDANet;
|
||||
|
||||
void Utils::print_vec(const float* d_vec, const unsigned int length) {
|
||||
std::vector<float> h_vec(length);
|
||||
CUDA_CHECK(cudaMemcpy(
|
||||
h_vec.data(), d_vec, sizeof(float) * length, cudaMemcpyDeviceToHost
|
||||
));
|
||||
|
||||
for (int i = 0; i < length; ++i) {
|
||||
std::cout << h_vec[i] << ", ";
|
||||
}
|
||||
|
||||
std::cout << std::endl;
|
||||
}
|
||||
|
||||
void Utils::clear(float* d_vec, const unsigned int length) {
|
||||
CUDA_CHECK(cudaMemset(d_vec, 0, sizeof(float) * length));
|
||||
}
|
||||
|
||||
void Utils::max(const float* d_vec, float* d_max, const unsigned int length) {
|
||||
|
||||
const int grid_size = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
Kernels::max_reduce<<<grid_size, BLOCK_SIZE>>>(d_vec, d_max, length);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
int remaining = grid_size;
|
||||
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::max_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_max, d_max, remaining);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
|
||||
}
|
||||
|
||||
void Utils::sum(const float* d_vec, float* d_sum, const unsigned int length) {
|
||||
|
||||
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
CUDANet::Kernels::sum_reduce<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_vec, d_sum, length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
int remaining = gridSize;
|
||||
while (remaining > 1) {
|
||||
int blocks_needed = (remaining + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
CUDANet::Kernels::sum_reduce<<<blocks_needed, BLOCK_SIZE>>>(d_sum, d_sum, remaining);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
remaining = blocks_needed;
|
||||
}
|
||||
}
|
||||
|
||||
void Utils::mean(const float* d_vec, float* d_mean, float *d_length, int length) {
|
||||
Utils::sum(d_vec, d_mean, length);
|
||||
|
||||
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_mean,
|
||||
d_mean,
|
||||
d_length,
|
||||
length
|
||||
);
|
||||
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
}
|
||||
|
||||
|
||||
void Utils::var(float* d_vec, float* d_var, float *d_length, const unsigned int length) {
|
||||
|
||||
const int gridSize = (length + BLOCK_SIZE - 1) / BLOCK_SIZE;
|
||||
|
||||
Kernels::vec_vec_mul<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_vec,
|
||||
d_vec,
|
||||
d_var,
|
||||
length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
// Sum over all differences
|
||||
Utils::sum(
|
||||
d_var,
|
||||
d_var,
|
||||
length
|
||||
);
|
||||
|
||||
// Divide by difference sum / length -> variance
|
||||
Kernels::vec_scalar_div<<<gridSize, BLOCK_SIZE>>>(
|
||||
d_var,
|
||||
d_var,
|
||||
d_length,
|
||||
length
|
||||
);
|
||||
CUDA_CHECK(cudaGetLastError());
|
||||
|
||||
}
|
||||
Reference in New Issue
Block a user